- Home
- /
- Drugs
- /
- J ANTIINFECTIVES FOR SYSTEMIC USE
- /
- J01
- /
- J01F
- /
- J01FA
- /
- J01FA01
- /
- Erythromycin 125 mg/5 ml Sugar Free Granules for Oral Suspension 0048
Primacine
Summary of product characteristics
1. Name of the medicinal product
Erythromycin 125 mg/5ml Sugar Free Granules for Oral Suspension
2. Qualitative and quantitative composition
Each 5 ml of reconstituted suspension contains 125 mg of Erythromycin (as ethylsuccinate ester).
Excipients with known effect
Each 5 ml of oral suspension contains 1.193 g of sorbitol.
Each 5 ml of oral suspension contains 21.6 mg of sodium.
For the full list of excipients, see section 6.1.
3. Pharmaceutical form
Granules for oral suspension
Sugar free, orange flavour oral suspension
4.1. Therapeutic indications
Erythromycin is indicated for the treatment / prophylaxis of infections caused by erythromycin-sensitive organisms:-
• upper and lower respiratory tract infections
• Skin and soft tissue infections
• bone infections
• gastro –intestinal infections
• oral/dental infections
• eye infections
• sexually transmitted diseases
• prophylaxis of whooping cough and diphtheria
• as an alternative to penicillin for staphylococcal infections in sensitive patients
Consideration should be given to official guidance on the appropriate use of antimicrobial agents
4.2. Posology and method of administration
Method of Administration
For oral administration only
Posology
Adults, including elderly, and children over 8 years:
250 – 500 mg every six hours, up to 4 g daily for more severe infections.
For acne vulgaris the usual dose is 250 mg three times daily before meals for one to four weeks and then reduced to twice daily until improvement occurs.
Children 2 to 8 years:
250 mg every six hours, doubled for severe infections.
30 mg/kg/day in divided doses. For severe infections up to 50 mg/kg/day in divided doses.
Children up to 2 years:
125 mg every six hours, doubled for severe infections.
30 mg/kg/day in divided doses. For severe infections up to 50 mg/kg/day in divided doses.
Renal Impairment
If impairment is severe (GFR< 10 ml/min), the daily dose should not exceed 1.5 g due to risk of ototoxicity.
4.3. Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Erythromycin is contraindicated in patients taking simvastatin, tolterodine, mizolastine, amisulpride, astemizole, terfenadine, domperidone, cisapride or pimozide.
Erythromycin is contraindicated with ergotamine and dihydroergotamine.
Erythromycin should not be given to patients with a history of QT prolongation (congenital or documented acquired QT prolongation) or ventricular cardiac arrhythmia, including torsades de pointes (see section 4.4 and 4.5).
Erythromycin should not be given to patients with electrolyte disturbances (hypokalaemia, hypomagnesaemia due to the risk of prolongation of QT interval).
Concomitant administration of erythromycin and lomitapide is contraindicated (see section 4.5).
4.4. Special warnings and precautions for use
As with other macrolides, rare serious allergic reactions, including acute generalised exanthematous pustulosis (AGEP) have been reported. If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be instituted. Physicians should be aware that reappearance of the allergic symptoms may occur when symptomatic therapy is discontinued.
Erythromycin is excreted principally by the liver, so caution should be exercised in administering the antibiotic to patients with impaired hepatic function or concomitantly receiving potentially hepatotoxic agents. Hepatic dysfunction including increased liver enzymes and/or cholestatic hepatitis, with or without jaundice, has been infrequently reported with erythromycin.
Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening (see section.4.8). Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including erythromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. difficile. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
Cardiovascular Events
Prolongation of the QT interval, reflecting effects on cardiac repolarisation imparting a risk of developing cardiac arrhythmia and torsades de pointes, have been seen in patients treated with macrolides including erythromycin (see sections 4.3, 4.5 and 4.8). Fatalities have been reported.
Erythromycin should be used with caution in the following;
Patients with coronary artery disease, severe cardiac insufficiency, conduction disturbances or clinically relevant bradycardia.
Patients concomitantly taking other medicinal products associated with QT prolongation (see section 4.3 and 4.5)
Elderly patients may be more susceptible to drug-associated effects on the QT interval (see section 4.8).
Epidemiological studies investigating the risk of adverse cardiovascular outcomes with macrolides have shown variable results. Some observational studies have identified a rare short term risk of arrhythmia, myocardial infarction and cardiovascular mortality associated with macrolides including erythromycin. Consideration of these findings should be balanced with treatment benefits when prescribing erythromycin.
There have been reports suggesting erythromycin does not reach the foetus in adequate concentrations to prevent congenital syphilis. Infants born to women treated during pregnancy with oral erythromycin for early syphilis should be treated with an appropriate penicillin regimen.
There have been reports that erythromycin may aggravate the weakness of patients with myasthenia gravis.
Erythromycin interferes with the fluorometric determination of urinary catecholamines.
Rhabdomyolysis with or without renal impairment has been reported in seriously ill patients receiving erythromycin concomitantly with statins.
There have been reports of infantile hypertrophic pyloric stenosis (IHPS) occurring in infants following erythromycin therapy. Epidemiological studies including data from meta-analyses suggest a 2-3-fold increase in the risk of IHPS following exposure to erythromycin in infancy. This risk is highest following exposure to erythromycin during the first 14 days of life. Available data suggests a risk of 2.6% (95% CI: 1.5 -4.2%) following exposure to erythromycin during this time period. The risk of IHPS in the general population is 0.1-0.2%. Since erythromycin may be used in the treatment of conditions in infants which are associated with significant mortality or morbidity (such as pertussis or chlamydia), the benefit of erythromycin therapy needs to be weighed against the potential risk of developing IHPS. Parents should be informed to contact their physician if vomiting or irritability with feeding occurs.
Carefully consider the balance of benefits and risks before prescribing erythromycin for any patients taking hydroxychloroquine or chloroquine, because of the potential for an increased risk of cardiovascular events and cardiovascular mortality (see section 4.5).
This medicine contains 1193 mg sorbitol in each 5 ml. Patients with hereditary fructose intolerance (HFI) should not take/be given this medicine.
This medicine contains less than 1 mmol sodium (23 mg) per 5 ml, that is to say essentially 'sodium free'.
4.5. Interaction with other medicinal products and other forms of interaction
Increases in serum concentrations of the following drugs metabolised by the cytochrome P450 system may occur when administered concurrently with erythromycin: acenocoumarol, alfentanil, astemizole, bromocriptine, carbamazepine, cilostazol, cyclosporin, digoxin, dihydroergotamine, disopyramide, ergotamine, hexobarbitone, methylprednisolone, midazolam, omeprazole, phenytoin, quinidine, rifabutin, sildenafil, tacrolimus, terfenadine, theophylline, triazolam, valproate, vinblastine, and antifungals e.g. fluconazole, ketoconazole and itraconazole. Appropriate monitoring should be undertaken and dosage should be adjusted as necessary. Particular care should be taken with medications known to prolong the QTc interval of the electrocardiogram.
Drugs that induce CYP3A4 (such as rifampicin, phenytoin, carbamazepine, phenobarbital, St John's Wort) may induce the metabolism of erythromycin. This may lead to sub-therapeutic levels of erythromycin and a decreased effect. The induction decreases gradually during two weeks after discontinued treatment with CYP3A4 inducers. Erythromycin should not be used during and two weeks after treatment with CYP3A4 inducers.
HMG-CoA Reductase Inhibitors: erythromycin has been reported to increase concentrations of HMG-CoA reductase inhibitors (e.g. lovastatin and simvastatin). Rare reports of rhabdomyolysis have been reported in patients taking these drugs concomitantly.
Concomitant administration of erythromycin with lomitapide is contraindicated due to the potential for markedly increased transaminases (see section 4.3).
Contraceptives: some antibiotics may in rare cases decrease the effect of contraceptive pills by interfering with the bacterial hydrolysis of steroid conjugates in the intestine and thereby reabsorption of unconjugated steroid. As a result of this plasma levels of active steroid may decrease.
Antihistamine H1 antagonists: care should be taken in the coadministration of erythromycin with H1 antagonists such as terfenadine, astemizole and mizolastine due to the alteration of their metabolism by erythromycin.
Erythromycin significantly alters the metabolism of terfenadine, astemizole and pimozide when taken concomitantly. Rare cases of serious, potentially fatal, cardiovascular events including cardiac arrest, torsade de pointes and other ventricular arrhythmias have been observed (see sections 4.3 and 4.8).
Anti-bacterial agents: an in vitro antagonism exists between erythromycin and the bactericidal beta-lactam antibiotics (e.g. penicillin, cephalosporin). Erythromycin antagonises the action of clindamycin, lincomycin and chloramphenicol. The same applies for streptomycin, tetracyclines and colistin.
Protease inhibitors: in concomitant administration of erythromycin and protease inhibitors, an inhibition of the decomposition of erythromycin has been observed.
Oral anticoagulants: there have been reports of increased anticoagulant effects when erythromycin and oral anticoagulants (e.g. warfarin, rivaroxaban) are used concomitantly.
Triazolobenzodiazepines (such as triazolam and alprazolam) and related benzodiazepines: erythromycin has been reported to decrease the clearance of triazolam, midazolam, and related benzodiazepines, and thus may increase the pharmacological effect of these benzodiazepines.
Post-marketing reports indicate that co-administration of erythromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterised by vasospasm and ischaemia of the central nervous system, extremities and other tissues (see section 4.3).
Elevated cisapride levels have been reported in patients receiving erythromycin and cisapride concomitantly. This may result in QTc prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and torsades de pointes. Similar effects have been observed with concomitant administration of pimozide and clarithromycin, another macrolide antibiotic.
Erythromycin use in patients who are receiving high doses of theophylline may be associated with an increase in serum theophylline levels and potential theophylline toxicity. In case of theophylline toxicity and/or elevated serum theophylline levels, the dose of theophylline should be reduced while the patient is receiving concomitant erythromycin therapy. There have been published reports suggesting when oral erythromycin is given concurrently with theophylline there is a significant decrease in erythromycin serum concentrations. This decrease could result in sub-therapeutic concentrations of erythromycin.
There have been post-marketing reports of colchicine toxicity with concomitant use of erythromycin and colchicine.
Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients receiving concurrent verapamil, a calcium channel blocker.
Cimetidine may inhibit the metabolism of erythromycin which may lead to an increased plasma concentration.
Erythromycin has been reported to decrease the clearance of zopiclone and thus may increase the pharmacodynamic effects of this drug.
Corticosteroids: Caution should be exercised in concomitant use of erythromycin with systemic and inhaled corticosteroids that are primarily metabolized by CYP3A due to the potential for increased systemic exposure to corticosteroids. If concomitant use occurs, patients should be closely monitored for systemic corticosteroid undesirable effects.
Hydroxychloroquine and chloroquine: Erythromycin should be used with caution in patients receiving these medicines known to prolong the QT interval due to the potential to induce cardiac arrhythmia and serious adverse cardiovascular events.
4.6. Fertility, pregnancy and lactation
Pregnancy
The available epidemiological studies on the risk of major congenital malformations with use of macrolides including erythromycin during pregnancy provide conflicting results. Some observational studies in humans have reported cardiovascular malformations after exposure to medicinal products containing erythromycin during early pregnancy.
Erythromycin has been reported to cross the placental barrier in humans, but foetal plasma levels are generally low.
There have been reports that maternal macrolide antibiotics exposure within 7 weeks of delivery may be associated with a higher risk of infantile hypertrophic pyloric stenosis (IHPS).
Erythromycin should be used by women during pregnancy only if clearly needed.
Breastfeeding
Erythromycin can be excreted into breast-milk. Caution should be exercised when administering erythromycin to lactating mothers due to reports of infantile hypertrophic pyloric stenosis in breast-fed infants.
4.7. Effects on ability to drive and use machines
None known
4.8. Undesirable effects
Blood and lymphatic system disorders
Eosinophilia.
Immune system disorders
Allergic reactions ranging from urticaria and mild skin eruptions to anaphylaxis have occurred.
Psychiatric disorders
Hallucinations
Nervous system disorders
There have been isolated reports of transient central nervous system side effects including confusion, seizures and vertigo; however, a cause and effect relationship has not been established.
Eye disorders
Mitochondrial Optic Neuropathy
Ear and labyrinth disorders
Deafness, tinnitus There have been isolated reports of reversible hearing loss occurring chiefly in patients with renal insufficiency or taking high doses.
Cardiac disorders
QTc interval prolongation, torsades de pointes, palpitations, and cardiac rhythm disorders including ventricular tachyarrhythmias.
Cardiac arrest, ventricular fibrillation (frequency not known).
Vascular disorders
Hypotension.
Gastrointestinal disorders
The most frequent side effects of oral erythromycin preparations are gastrointestinal and are dose-related. The following have been reported: upper abdominal discomfort, nausea, vomiting, diarrhoea, pancreatitis, anorexia, infantile hypertrophic pyloric stenosis. Pseudomembranous colitis has been rarely reported in association with erythromycin therapy (see section 4.4).
Hepatobiliary disorders
Cholestatic hepatitis, jaundice, hepatic dysfunction, hepatomegaly, hepatic failure, hepatocellular hepatitis (see section 4.4).
Skin and subcutaneous tissue disorders
Skin eruptions, pruritus, urticaria, exanthema, angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis, erythema multiforme.
Not known: acute generalised exanthematous pustulosis (AGEP).
Renal and urinary disorders
Interstitial nephritis
General disorders and administration site conditions
Chest pain, fever, malaise.
Investigations
Increased liver enzyme values.
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
4.9. Overdose
Symptoms: hearing loss, severe nausea, vomiting and diarrhoea.
Treatment: gastric lavage, general supportive measures.
Erythromycin is not dialysable.
5.1. Pharmacodynamic properties
Pharmacotherapeutic group: Macrolides, Lincosamides and Streptogramins, Macrolides, ATC code: J01F A01
Mechanism of action
Erythromycin exerts its antimicrobial action by binding to the 50S ribosomal sub-unit of susceptible microorganisms and suppresses protein synthesis. Erythromycin is usually active against most strains of the following organisms both in vitro and in clinical infections.
Gram positive bacteria - Listeria monocytogenes, Corynebacterium diphtheriae (as an adjunct to antitoxin), Staphylococci spp, Streptococci spp (including Enterococci).
Gram negative bacteria - Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Legionella pneumophila, Moraxella (Branhamella) catarrhalis, Bordetella pertussis, Campylobacter spp.
Mycoplasma - Mycoplasma pneumoniae, Ureaplasma urealyticum.
Other organisms - Treponema pallidum, Chlamydia spp, Clostridia spp, L-forms, the agents causing trachoma and lymphogranuloma venereum.
Note: The majority of strains of Haemophilus influenzae are susceptible to the concentrations reached after ordinary doses.
5.2. Pharmacokinetic properties
Absorption is facilitated if the stomach is empty.
Peak blood levels normally occur within 1 hour of dosing of erythromycin ethylsuccinate granules. The elimination half life is approximately 2 hours. Doses may be administered 2, 3 or 4 times a day.
Erythromycin ethylsuccinate is less susceptible than erythromycin to the adverse effect of gastric acid. It is absorbed from the small intestine. It is widely distributed throughout body tissues. Little metabolism occurs and only about 5% is excreted in the urine. It is excreted principally by the liver.
The drug is not removed by either peritoneal dialysis or haemodialysis. It diffuses readily into intracellular fluids and antibacterial activity can be achieved at essentially all sites. There is some retention on liver and spleen. Only low concentrations are achieved in cerebrospinal fluid, unless the meninges are inflamed. Diffusion into the aqueous humour, but not the vitreous humour of the eye is good. A significant proportion is bound to serum proteins.
5.3. Preclinical safety data
There are no preclinical data of relevance to the prescriber, which are additional to that already included in the other sections of the SPC
6.1. List of excipients
Colloidal anhydrous silica
Sorbitol
Riboflavin-5-sodium phosphate
Orange flavour (contain propylene glycol)
Glycerly mono and distearate (Atmer 22 (Atmos 150))
Anhydrous disodium hydrogen phosphate
Carmellose sodium
6.2. Incompatibilities
None know
6.3. Shelf life
Unopened 3 years
Once reconstituted 14 days
6.4. Special precautions for storage
Granules: do not store above 25°C
Following reconstitution: do not store above 25°C. Do not freeze. When storing keep the cap tightly closed. The reconstituted granules have a shelf life of 14 days. Shake well before administration. Keep out of the sight and reach of children.
6.5. Nature and contents of container
Amber (Type III) glass bottle with tamper evident polypropylene cap (100 ml, 140 ml, and 150 ml).
White HDPE plastic bottles with wadded, tamper evident polypropylene cap (100 ml, 125 ml 140 ml and 150 ml)
Pack sizes 60 ml, 100 ml and 140 ml.
Not all pack sizes may be marketed.
6.6. Special precautions for disposal and other handling
60 ml suspension: to reconstitute first shake bottle to loosen powder add 48 ml water and shake the bottle vigorously until the granules are fully suspended. The resulting suspension is yellow in colour.
100 ml suspension: to reconstitute first shake bottle to loosen powder add 80 ml water and shake the bottle vigorously until the granules are fully suspended. The resulting suspension is yellow in colour
140 ml suspension: to reconstitute first shake bottle to loosen powder add 112 ml water and shake the bottle vigorously until the granules are fully suspended. The resulting suspension is yellow in colour
7. Marketing authorisation holder
Pinewood Laboratories limited
Ballymacarbry
Clonmel
Co. Tipperary
Ireland
8. Marketing authorisation number(s)
PL 04917/0048
9. Date of first authorisation/renewal of the authorisation
22/06/2009
10. Date of revision of the text
07/12/2023
4.1 Therapeutic indications
Erythromycin is indicated for the treatment / prophylaxis of infections caused by erythromycin-sensitive organisms:-
• upper and lower respiratory tract infections
• Skin and soft tissue infections
• bone infections
• gastro –intestinal infections
• oral/dental infections
• eye infections
• sexually transmitted diseases
• prophylaxis of whooping cough and diphtheria
• as an alternative to penicillin for staphylococcal infections in sensitive patients
Consideration should be given to official guidance on the appropriate use of antimicrobial agents
4.2 Posology and method of administration
Method of Administration
For oral administration only
Posology
Adults, including elderly, and children over 8 years:
250 – 500 mg every six hours, up to 4 g daily for more severe infections.
For acne vulgaris the usual dose is 250 mg three times daily before meals for one to four weeks and then reduced to twice daily until improvement occurs.
Children 2 to 8 years:
250 mg every six hours, doubled for severe infections.
30 mg/kg/day in divided doses. For severe infections up to 50 mg/kg/day in divided doses.
Children up to 2 years:
125 mg every six hours, doubled for severe infections.
30 mg/kg/day in divided doses. For severe infections up to 50 mg/kg/day in divided doses.
Renal Impairment
If impairment is severe (GFR< 10 ml/min), the daily dose should not exceed 1.5 g due to risk of ototoxicity.
4.3 Contraindications
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Erythromycin is contraindicated in patients taking simvastatin, tolterodine, mizolastine, amisulpride, astemizole, terfenadine, domperidone, cisapride or pimozide.
Erythromycin is contraindicated with ergotamine and dihydroergotamine.
Erythromycin should not be given to patients with a history of QT prolongation (congenital or documented acquired QT prolongation) or ventricular cardiac arrhythmia, including torsades de pointes (see section 4.4 and 4.5).
Erythromycin should not be given to patients with electrolyte disturbances (hypokalaemia, hypomagnesaemia due to the risk of prolongation of QT interval).
Concomitant administration of erythromycin and lomitapide is contraindicated (see section 4.5).
4.4 Special warnings and precautions for use
As with other macrolides, rare serious allergic reactions, including acute generalised exanthematous pustulosis (AGEP) have been reported. If an allergic reaction occurs, the drug should be discontinued and appropriate therapy should be instituted. Physicians should be aware that reappearance of the allergic symptoms may occur when symptomatic therapy is discontinued.
Erythromycin is excreted principally by the liver, so caution should be exercised in administering the antibiotic to patients with impaired hepatic function or concomitantly receiving potentially hepatotoxic agents. Hepatic dysfunction including increased liver enzymes and/or cholestatic hepatitis, with or without jaundice, has been infrequently reported with erythromycin.
Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening (see section.4.8). Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including erythromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. difficile. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.
Cardiovascular Events
Prolongation of the QT interval, reflecting effects on cardiac repolarisation imparting a risk of developing cardiac arrhythmia and torsades de pointes, have been seen in patients treated with macrolides including erythromycin (see sections 4.3, 4.5 and 4.8). Fatalities have been reported.
Erythromycin should be used with caution in the following;
Patients with coronary artery disease, severe cardiac insufficiency, conduction disturbances or clinically relevant bradycardia.
Patients concomitantly taking other medicinal products associated with QT prolongation (see section 4.3 and 4.5)
Elderly patients may be more susceptible to drug-associated effects on the QT interval (see section 4.8).
Epidemiological studies investigating the risk of adverse cardiovascular outcomes with macrolides have shown variable results. Some observational studies have identified a rare short term risk of arrhythmia, myocardial infarction and cardiovascular mortality associated with macrolides including erythromycin. Consideration of these findings should be balanced with treatment benefits when prescribing erythromycin.
There have been reports suggesting erythromycin does not reach the foetus in adequate concentrations to prevent congenital syphilis. Infants born to women treated during pregnancy with oral erythromycin for early syphilis should be treated with an appropriate penicillin regimen.
There have been reports that erythromycin may aggravate the weakness of patients with myasthenia gravis.
Erythromycin interferes with the fluorometric determination of urinary catecholamines.
Rhabdomyolysis with or without renal impairment has been reported in seriously ill patients receiving erythromycin concomitantly with statins.
There have been reports of infantile hypertrophic pyloric stenosis (IHPS) occurring in infants following erythromycin therapy. Epidemiological studies including data from meta-analyses suggest a 2-3-fold increase in the risk of IHPS following exposure to erythromycin in infancy. This risk is highest following exposure to erythromycin during the first 14 days of life. Available data suggests a risk of 2.6% (95% CI: 1.5 -4.2%) following exposure to erythromycin during this time period. The risk of IHPS in the general population is 0.1-0.2%. Since erythromycin may be used in the treatment of conditions in infants which are associated with significant mortality or morbidity (such as pertussis or chlamydia), the benefit of erythromycin therapy needs to be weighed against the potential risk of developing IHPS. Parents should be informed to contact their physician if vomiting or irritability with feeding occurs.
Carefully consider the balance of benefits and risks before prescribing erythromycin for any patients taking hydroxychloroquine or chloroquine, because of the potential for an increased risk of cardiovascular events and cardiovascular mortality (see section 4.5).
This medicine contains 1193 mg sorbitol in each 5 ml. Patients with hereditary fructose intolerance (HFI) should not take/be given this medicine.
This medicine contains less than 1 mmol sodium (23 mg) per 5 ml, that is to say essentially 'sodium free'.
4.5 Interaction with other medicinal products and other forms of interaction
Increases in serum concentrations of the following drugs metabolised by the cytochrome P450 system may occur when administered concurrently with erythromycin: acenocoumarol, alfentanil, astemizole, bromocriptine, carbamazepine, cilostazol, cyclosporin, digoxin, dihydroergotamine, disopyramide, ergotamine, hexobarbitone, methylprednisolone, midazolam, omeprazole, phenytoin, quinidine, rifabutin, sildenafil, tacrolimus, terfenadine, theophylline, triazolam, valproate, vinblastine, and antifungals e.g. fluconazole, ketoconazole and itraconazole. Appropriate monitoring should be undertaken and dosage should be adjusted as necessary. Particular care should be taken with medications known to prolong the QTc interval of the electrocardiogram.
Drugs that induce CYP3A4 (such as rifampicin, phenytoin, carbamazepine, phenobarbital, St John's Wort) may induce the metabolism of erythromycin. This may lead to sub-therapeutic levels of erythromycin and a decreased effect. The induction decreases gradually during two weeks after discontinued treatment with CYP3A4 inducers. Erythromycin should not be used during and two weeks after treatment with CYP3A4 inducers.
HMG-CoA Reductase Inhibitors: erythromycin has been reported to increase concentrations of HMG-CoA reductase inhibitors (e.g. lovastatin and simvastatin). Rare reports of rhabdomyolysis have been reported in patients taking these drugs concomitantly.
Concomitant administration of erythromycin with lomitapide is contraindicated due to the potential for markedly increased transaminases (see section 4.3).
Contraceptives: some antibiotics may in rare cases decrease the effect of contraceptive pills by interfering with the bacterial hydrolysis of steroid conjugates in the intestine and thereby reabsorption of unconjugated steroid. As a result of this plasma levels of active steroid may decrease.
Antihistamine H1 antagonists: care should be taken in the coadministration of erythromycin with H1 antagonists such as terfenadine, astemizole and mizolastine due to the alteration of their metabolism by erythromycin.
Erythromycin significantly alters the metabolism of terfenadine, astemizole and pimozide when taken concomitantly. Rare cases of serious, potentially fatal, cardiovascular events including cardiac arrest, torsade de pointes and other ventricular arrhythmias have been observed (see sections 4.3 and 4.8).
Anti-bacterial agents: an in vitro antagonism exists between erythromycin and the bactericidal beta-lactam antibiotics (e.g. penicillin, cephalosporin). Erythromycin antagonises the action of clindamycin, lincomycin and chloramphenicol. The same applies for streptomycin, tetracyclines and colistin.
Protease inhibitors: in concomitant administration of erythromycin and protease inhibitors, an inhibition of the decomposition of erythromycin has been observed.
Oral anticoagulants: there have been reports of increased anticoagulant effects when erythromycin and oral anticoagulants (e.g. warfarin, rivaroxaban) are used concomitantly.
Triazolobenzodiazepines (such as triazolam and alprazolam) and related benzodiazepines: erythromycin has been reported to decrease the clearance of triazolam, midazolam, and related benzodiazepines, and thus may increase the pharmacological effect of these benzodiazepines.
Post-marketing reports indicate that co-administration of erythromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterised by vasospasm and ischaemia of the central nervous system, extremities and other tissues (see section 4.3).
Elevated cisapride levels have been reported in patients receiving erythromycin and cisapride concomitantly. This may result in QTc prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and torsades de pointes. Similar effects have been observed with concomitant administration of pimozide and clarithromycin, another macrolide antibiotic.
Erythromycin use in patients who are receiving high doses of theophylline may be associated with an increase in serum theophylline levels and potential theophylline toxicity. In case of theophylline toxicity and/or elevated serum theophylline levels, the dose of theophylline should be reduced while the patient is receiving concomitant erythromycin therapy. There have been published reports suggesting when oral erythromycin is given concurrently with theophylline there is a significant decrease in erythromycin serum concentrations. This decrease could result in sub-therapeutic concentrations of erythromycin.
There have been post-marketing reports of colchicine toxicity with concomitant use of erythromycin and colchicine.
Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients receiving concurrent verapamil, a calcium channel blocker.
Cimetidine may inhibit the metabolism of erythromycin which may lead to an increased plasma concentration.
Erythromycin has been reported to decrease the clearance of zopiclone and thus may increase the pharmacodynamic effects of this drug.
Corticosteroids: Caution should be exercised in concomitant use of erythromycin with systemic and inhaled corticosteroids that are primarily metabolized by CYP3A due to the potential for increased systemic exposure to corticosteroids. If concomitant use occurs, patients should be closely monitored for systemic corticosteroid undesirable effects.
Hydroxychloroquine and chloroquine: Erythromycin should be used with caution in patients receiving these medicines known to prolong the QT interval due to the potential to induce cardiac arrhythmia and serious adverse cardiovascular events.
4.6 Fertility, pregnancy and lactation
Pregnancy
The available epidemiological studies on the risk of major congenital malformations with use of macrolides including erythromycin during pregnancy provide conflicting results. Some observational studies in humans have reported cardiovascular malformations after exposure to medicinal products containing erythromycin during early pregnancy.
Erythromycin has been reported to cross the placental barrier in humans, but foetal plasma levels are generally low.
There have been reports that maternal macrolide antibiotics exposure within 7 weeks of delivery may be associated with a higher risk of infantile hypertrophic pyloric stenosis (IHPS).
Erythromycin should be used by women during pregnancy only if clearly needed.
Breastfeeding
Erythromycin can be excreted into breast-milk. Caution should be exercised when administering erythromycin to lactating mothers due to reports of infantile hypertrophic pyloric stenosis in breast-fed infants.
4.7 Effects on ability to drive and use machines
None known
4.8 Undesirable effects
Blood and lymphatic system disorders
Eosinophilia.
Immune system disorders
Allergic reactions ranging from urticaria and mild skin eruptions to anaphylaxis have occurred.
Psychiatric disorders
Hallucinations
Nervous system disorders
There have been isolated reports of transient central nervous system side effects including confusion, seizures and vertigo; however, a cause and effect relationship has not been established.
Eye disorders
Mitochondrial Optic Neuropathy
Ear and labyrinth disorders
Deafness, tinnitus There have been isolated reports of reversible hearing loss occurring chiefly in patients with renal insufficiency or taking high doses.
Cardiac disorders
QTc interval prolongation, torsades de pointes, palpitations, and cardiac rhythm disorders including ventricular tachyarrhythmias.
Cardiac arrest, ventricular fibrillation (frequency not known).
Vascular disorders
Hypotension.
Gastrointestinal disorders
The most frequent side effects of oral erythromycin preparations are gastrointestinal and are dose-related. The following have been reported: upper abdominal discomfort, nausea, vomiting, diarrhoea, pancreatitis, anorexia, infantile hypertrophic pyloric stenosis. Pseudomembranous colitis has been rarely reported in association with erythromycin therapy (see section 4.4).
Hepatobiliary disorders
Cholestatic hepatitis, jaundice, hepatic dysfunction, hepatomegaly, hepatic failure, hepatocellular hepatitis (see section 4.4).
Skin and subcutaneous tissue disorders
Skin eruptions, pruritus, urticaria, exanthema, angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis, erythema multiforme.
Not known: acute generalised exanthematous pustulosis (AGEP).
Renal and urinary disorders
Interstitial nephritis
General disorders and administration site conditions
Chest pain, fever, malaise.
Investigations
Increased liver enzyme values.
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
Learning Zones
The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.
Disclaimer
The drug SPC information (indications, contra-indications, interactions, etc), has been developed in collaboration with eMC (www.medicines.org.uk/emc/). Medthority offers the whole library of SPC documents from eMC.
Medthority will not be held liable for explicit or implicit errors, or missing data.
Drug Licencing
Drugs appearing in this section are approved by UK Medicines & Healthcare Products Regulatory Agency (MHRA), & the European Medicines Agency (EMA).