This site is intended for healthcare professionals
Abstract digital waveforms in blue and purple
FDA Drug information

Bortezomib

Read time: 5 mins
Marketing start date: 23 Dec 2024

Summary of product characteristics


Adverse Reactions

6 ADVERSE REACTIONS The following clinically significant adverse reactions are also discussed in other sections of the labeling: Peripheral Neuropathy [see Warnings and Precautions (5.1)] Hypotension [see Warnings and Precautions (5.2)] Cardiac Toxicity [see Warnings and Precautions (5.3)] Pulmonary Toxicity [see Warnings and Precautions (5.4)] Posterior Reversible Encephalopathy Syndrome (PRES) [see Warnings and Precautions (5.5)] Gastrointestinal Toxicity [see Warnings and Precautions (5.6)] Thrombocytopenia/Neutropenia [see Warnings and Precautions (5.7)] Tumor Lysis Syndrome [see Warnings and Precautions (5.8)] Hepatic Toxicity [see Warnings and Precautions (5.9)] Thrombotic Microangiopathy [see Warnings and Precautions (5.10)] Most commonly reported adverse reactions (incidence ≥20%) in clinical studies include nausea, diarrhea, thrombocytopenia, neutropenia, peripheral neuropathy, fatigue, neuralgia, anemia, leukopenia, constipation, vomiting, lymphopenia, rash, pyrexia, and anorexia. (6.1) To report SUSPECTED ADVERSE REACTIONS, contact Fosun Pharma USA Inc. at 1-866-611-3762 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. 6.1 Clinical Trials Experience Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. Summary of Clinical Trial in Patients with Previously Untreated Multiple Myeloma Table 8 describes safety data from 340 patients with previously untreated multiple myeloma who received bortezomib (1.3 mg/m 2 ) administered intravenously in combination with melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) in a prospective randomized study. The safety profile of Bortezomib Injection in combination with melphalan/prednisone is consistent with the known safety profiles of both bortezomib and melphalan/prednisone Relapsed Multiple Myeloma Randomized Study of Bortezomib vs Dexamethasone The safety data described below and in Table 9 reflect exposure to either bortezomib (n=331) or dexamethasone (n=332) in a study of patients with relapsed multiple myeloma. Bortezomib was administered intravenously at doses of 1.3 mg/m 2 twice weekly for two out of three weeks (21 day cycle). After eight 21 day cycles patients continued therapy for three 35 day cycles on a weekly schedule. Duration of treatment was up to 11 cycles (nine months) with a median duration of six cycles (4.1 months). For inclusion in the trial, patients must have had measurable disease and one to three prior therapies. There was no upper age limit for entry. Creatinine clearance could be as low as 20 mL/min and bilirubin levels as high as 1.5 times the upper limit of normal. The overall frequency of adverse reactions was similar in men and women, and in patients <65 and ≥65 years of age. Most patients were Caucasian [see Clinical Studies (14.1)] . Among the 331 bortezomib-treated patients, the most commonly reported (>20%) adverse reactions overall were nausea (52%), diarrhea (52%), fatigue (39%), peripheral neuropathies (35%), thrombocytopenia (33%), constipation (30%), vomiting (29%), and anorexia (21%). The most commonly reported (>20%) adverse reaction reported among the 332 patients in the dexamethasone group was fatigue (25%). Eight percent (8%) of patients in the bortezomib-treated arm experienced a Grade 4 adverse reaction; the most common reactions were thrombocytopenia (4%) and neutropenia (2%). Nine percent (9%) of dexamethasone-treated patients experienced a Grade 4 adverse reaction. All individual dexamethasone-related Grade 4 adverse reactions were less than 1%. Serious Adverse Reactions and Adverse Reactions Leading to Treatment Discontinuation in the Relapsed Multiple Myeloma Study of Bortezomib vs Dexamethasone Serious adverse reactions are defined as any reaction that results in death, is life-threatening, requires hospitalization or prolongs a current hospitalization, results in a significant disability, or is deemed to be an important medical event. A total of 80 (24%) patients from the bortezomib treatment arm experienced a serious adverse reaction during the study, as did 83 (25%) dexamethasone-treated patients. The most commonly reported serious adverse reactions in the bortezomib treatment arm were diarrhea (3%), dehydration, herpes zoster, pyrexia, nausea, vomiting, dyspnea, and thrombocytopenia (2% each). In the dexamethasone treatment group, the most commonly reported serious adverse reactions were pneumonia (4%), hyperglycemia (3%), pyrexia, and psychotic disorder (2% each). A total of 145 patients, including 84 (25%) of 331 patients in the bortezomib treatment group and 61 (18%) of 332 patients in the dexamethasone treatment group were discontinued from treatment due to adverse reactions. Among the 331 bortezomib treated patients, the most commonly reported adverse reaction leading to discontinuation was peripheral neuropathy (8%). Among the 332 patients in the dexamethasone group, the most commonly reported adverse reactions leading to treatment discontinuation were psychotic disorder and hyperglycemia (2% each). Four deaths were considered to be bortezomib-related in this relapsed multiple myeloma study: one case each of cardiogenic shock, respiratory insufficiency, congestive heart failure and cardiac arrest. Four deaths were considered dexamethasone-related: two cases of sepsis, one case of bacterial meningitis, and one case of sudden death at home. Most Commonly Reported Adverse Reactions in the Relapsed Multiple Myeloma Study of Bortezomib vs Dexamethasone The most common adverse reactions from the relapsed multiple myeloma study are shown in Table 9. All adverse reactions with incidence ≥10% in the bortezomib arm are included. Safety Experience from the Phase 2 Open-Label Extension Study in Relapsed Multiple Myeloma In the Phase 2 extension study of 63 patients, no new cumulative or new long-term toxicities were observed with prolonged bortezomib treatment. These patients were treated for a total of 5.3 to 23 months, including time on bortezomib in the prior bortezomib study [see Clinical Studies (14.1)] . Safety Experience from the Clinical Trial in Patients with Previously Untreated Mantle Cell Lymphoma Table 10 describes safety data from 240 patients with previously untreated mantle cell lymphoma who received bortezomib (1.3 mg/m 2 ) administered intravenously in combination with rituximab (375 mg/m 2 ), cyclophosphamide (750 mg/m 2 ), doxorubicin (50 mg/m 2 ), and prednisone (100 mg/m 2 ) (VcR-CAP) in a prospective randomized study. Infections were reported for 31% of patients in the VcR-CAP arm and 23% of the patients in the comparator (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP]) arm, including the predominant preferred term of pneumonia (VcR-CAP 8% vs R-CHOP 5%). The incidence of herpes zoster reactivation was 4.6% in the VcR-CAP arm and 0.8% in the R-CHOP arm. Antiviral prophylaxis was mandated by protocol amendment. The incidences of Grade ≥3 bleeding events were similar between the two arms (four patients in the VcR-CAP arm and three patients in the R-CHOP arm). All of the Grade ≥3 bleeding events resolved without sequelae in the VcR-CAP arm. Adverse reactions leading to discontinuation occurred in 8% of patients in VcR-CAP group and 6% of patients in R-CHOP group. In the VcR-CAP group, the most commonly reported adverse reaction leading to discontinuation was peripheral sensory neuropathy (1%; three patients). The most commonly reported adverse reaction leading to discontinuation in the R-CHOP group was febrile neutropenia (<1%; two patients). Integrated Summary of Safety (Relapsed Multiple Myeloma and Relapsed Mantle Cell Lymphoma) Safety data from Phase 2 and 3 studies of single agent bortezomib 1.3 mg/m 2 /dose twice weekly for two weeks followed by a ten day rest period in 1163 patients with previously-treated multiple myeloma (N=1008) and previously-treated mantle cell lymphoma (N=155) were integrated and tabulated. In the integrated studies, the safety profile of bortezomib was similar in patients with multiple myeloma and mantle cell lymphoma. In the integrated analysis, the most commonly reported (>20%) adverse reactions were nausea (49%), diarrhea (46%), asthenic conditions including fatigue (41%) and weakness (11%), peripheral neuropathies (38%), thrombocytopenia (32%), vomiting (28%), constipation (25%), and pyrexia (21%). Eleven percent (11%) of patients experienced at least one episode of ≥Grade 4 toxicity, most commonly thrombocytopenia (4%) and neutropenia (2%). In the Phase 2 relapsed multiple myeloma clinical trials of bortezomib administered intravenously, local skin irritation was reported in 5% of patients, but extravasation of bortezomib was not associated with tissue damage. Serious Adverse Reactions and Adverse Reactions Leading to Treatment Discontinuation in the Integrated Summary of Safety A total of 26% of patients experienced a serious adverse reaction during the studies. The most commonly reported serious adverse reactions included diarrhea, vomiting and pyrexia (3% each), nausea, dehydration, and thrombocytopenia (2% each) and pneumonia, dyspnea, peripheral neuropathies, and herpes zoster (1% each). Adverse reactions leading to discontinuation occurred in 22% of patients. The reasons for discontinuation included peripheral neuropathy (8%), and fatigue, thrombocytopenia, and diarrhea (2% each). In total, 2% of the patients died and the cause of death was considered by the investigator to be possibly related to study drug: including reports of cardiac arrest, congestive heart failure, respiratory failure, renal failure, pneumonia and sepsis. Most Commonly Reported Adverse Reactions in the Integrated Summary of Safety The most common adverse reactions are shown in Table 11. All adverse reactions occurring at ≥10% are included. In the absence of a randomized comparator arm, it is often not possible to distinguish between adverse events that are drug-caused and those that reflect the patient's underlying disease. Please see the discussion of specific adverse reactions that follows. Description of Selected Adverse Reactions from the Integrated Phase 2 and 3 Relapsed Multiple Myeloma and Phase 2 Relapsed Mantle Cell Lymphoma Studies Gastrointestinal Toxicity A total of 75% of patients experienced at least one gastrointestinal disorder. The most common gastrointestinal disorders included nausea, diarrhea, constipation, vomiting, and appetite decreased. Other gastrointestinal disorders included dyspepsia and dysgeusia. Grade 3 adverse reactions occurred in 14% of patients; ≥Grade 4 adverse reactions were ≤1%. Gastrointestinal adverse reactions were considered serious in 7% of patients. Four percent (4%) of patients discontinued due to a gastrointestinal adverse reaction. Nausea was reported more often in patients with multiple myeloma (51%) compared to patients with mantle cell lymphoma (36%). Thrombocytopenia Across the studies, bortezomib-associated thrombocytopenia was characterized by a decrease in platelet count during the dosing period (Days 1 to 11) and a return toward baseline during the ten day rest period during each treatment cycle. Overall, thrombocytopenia was reported in 32% of patients. Thrombocytopenia was Grade 3 in 22%, ≥Grade 4 in 4%, and serious in 2% of patients, and the reaction resulted in bortezomib discontinuation in 2% of patients [see Warnings and Precautions (5.7)] . Thrombocytopenia was reported more often in patients with multiple myeloma (34%) compared to patients with mantle cell lymphoma (16%). The incidence of ≥Grade 3 thrombocytopenia also was higher in patients with multiple myeloma (28%) compared to patients with mantle cell lymphoma (8%). Peripheral Neuropathy Overall, peripheral neuropathies occurred in 38% of patients. Peripheral neuropathy was Grade 3 for 11% of patients and ≥Grade 4 for <1% of patients. Eight percent (8%) of patients discontinued bortezomib due to peripheral neuropathy. The incidence of peripheral neuropathy was higher among patients with mantle cell lymphoma (54%) compared to patients with multiple myeloma (36%). In the bortezomib vs dexamethasone Phase 3 relapsed multiple myeloma study, among the 62 bortezomib-treated patients who experienced ≥Grade 2 peripheral neuropathy and had dose adjustments, 48% had improved or resolved with a median of 3.8 months from first onset. In the Phase 2 relapsed multiple myeloma studies, among the 30 patients who experienced Grade 2 peripheral neuropathy resulting in discontinuation or who experienced ≥Grade 3 peripheral neuropathy, 73% reported improvement or resolution with a median time of 47 days to improvement of one Grade or more from the last dose of bortezomib. Hypotension The incidence of hypotension (postural, orthostatic and hypotension NOS) was 8% in patients treated with bortezomib. Hypotension was Grade 1 or 2 in the majority of patients and Grade 3 in 2% and ≥Grade 4 in <1%. Two percent (2%) of patients had hypotension reported as a serious adverse reaction, and 1% discontinued due to hypotension. The incidence of hypotension was similar in patients with multiple myeloma (8%) and those with mantle cell lymphoma (9%). In addition, <1% of patients experienced hypotension associated with a syncopal reaction. Neutropenia Neutrophil counts decreased during the bortezomib dosing period (Days 1 to 11) and returned toward baseline during the ten day rest period during each treatment cycle. Overall, neutropenia occurred in 15% of patients and was Grade 3 in 8% of patients and ≥Grade 4 in 2%. Neutropenia was reported as a serious adverse reaction in <1% of patients and <1% of patients discontinued due to neutropenia. The incidence of neutropenia was higher in patients with multiple myeloma (16%) compared to patients with mantle cell lymphoma (5%). The incidence of ≥Grade 3 neutropenia also was higher in patients with multiple myeloma (12%) compared to patients with mantle cell lymphoma (3%). Asthenic conditions (Fatigue, Malaise, Weakness, Asthenia) Asthenic conditions were reported in 54% of patients. Fatigue was reported as Grade 3 in 7% and ≥Grade 4 in <1% of patients. Asthenia was reported as Grade 3 in 2% and ≥Grade 4 in < 1% of patients. Two percent (2%) of patients discontinued treatment due to fatigue and < 1% due to weakness and asthenia. Asthenic conditions were reported in 53% of patients with multiple myeloma and 59% of patients with mantle cell lymphoma. Pyrexia Pyrexia (> 38°C) was reported as an adverse reaction for 21% of patients. The reaction was Grade 3 in 1% and ≥Grade 4 in <1%. Pyrexia was reported as a serious adverse reaction in 3% of patients and led to bortezomib discontinuation in <1% of patients. The incidence of pyrexia was higher among patients with multiple myeloma (23%) compared to patients with mantle cell lymphoma (10%). The incidence of ≥Grade 3 pyrexia was 1% in patients with multiple myeloma and <1% in patients with mantle cell lymphoma. Herpes Virus Infection Consider using antiviral prophylaxis in subjects being treated with Bortezomib Injection. In the randomized studies in previously untreated and relapsed multiple myeloma, herpes zoster reactivation was more common in subjects treated with bortezomib (ranging between 6 to 11%) than in the control groups (3 to 4%). Herpes simplex was seen in 1 to 3% in subjects treated with bortezomib and 1 to 3% in the control groups. In the previously untreated multiple myeloma study, herpes zoster virus reactivation in the bortezomib, melphalan and prednisone arm was less common in subjects receiving prophylactic antiviral therapy (3%) than in subjects who did not receive prophylactic antiviral therapy (17%). Retreatment in Relapsed Multiple Myeloma A single-arm trial was conducted in 130 patients with relapsed multiple myeloma to determine the efficacy and safety of retreatment with intravenous bortezomib. The safety profile of patients in this trial is consistent with the known safety profile of bortezomib-treated patients with relapsed multiple myeloma as demonstrated in Tables 10, 11, and 13; no cumulative toxicities were observed upon retreatment. The most common adverse drug reaction was thrombocytopenia which occurred in 52% of the patients. The incidence of ≥Grade 3 thrombocytopenia was 24%. Peripheral neuropathy occurred in 28% of patients, with the incidence of ≥Grade 3 peripheral neuropathy reported at 6%. The incidence of serious adverse reactions was 12.3%. The most commonly reported serious adverse reactions were thrombocytopenia (3.8%), diarrhea (2.3%), and herpes zoster and pneumonia (1.5% each). Adverse reactions leading to discontinuation occurred in 13% of patients. The reasons for discontinuation included peripheral neuropathy (5%) and diarrhea (3%). Two deaths considered to be bortezomib-related occurred within 30 days of the last bortezomib dose; one in a patient with cerebrovascular accident and one in a patient with sepsis. Additional Adverse Reactions from Clinical Studies The following clinically important serious adverse reactions that are not described above have been reported in clinical trials in patients treated with bortezomib administered as monotherapy or in combination with other chemotherapeutics. These studies were conducted in patients with hematological malignancies and in solid tumors. Blood and Lymphatic System Disorders: Anemia, disseminated intravascular coagulation, febrile neutropenia, lymphopenia, leukopenia Cardiac Disorders: Angina pectoris, atrial fibrillation aggravated, atrial flutter, bradycardia, sinus arrest, cardiac amyloidosis, complete atrioventricular block, myocardial ischemia, myocardial infarction, pericarditis, pericardial effusion, Torsades de pointes , ventricular tachycardia Ear and Labyrinth Disorders: Hearing impaired, vertigo Eye Disorders: Diplopia and blurred vision, conjunctival infection, irritation Gastrointestinal Disorders: Abdominal pain, ascites, dysphagia, fecal impaction, gastroenteritis, gastritis hemorrhagic, hematemesis, hemorrhagic duodenitis, ileus paralytic, large intestinal obstruction, paralytic intestinal obstruction, peritonitis, small intestinal obstruction, large intestinal perforation, stomatitis, melena, pancreatitis acute, oral mucosal petechiae, gastroesophageal reflux General Disorders and Administration Site Conditions: Chills, edema, edema peripheral, injection site erythema, neuralgia, injection site pain, irritation, malaise, phlebitis Hepatobiliary Disorders: Cholestasis, hepatic hemorrhage, hyperbilirubinemia, portal vein thrombosis, hepatitis, liver failure Immune System Disorders: Anaphylactic reaction, drug hypersensitivity, immune complex mediated hypersensitivity, angioedema, laryngeal edema Infections and Infestations: Aspergillosis, bacteremia, bronchitis, urinary tract infection, herpes viral infection, listeriosis, nasopharyngitis, pneumonia, respiratory tract infection, septic shock, toxoplasmosis, oral candidiasis, sinusitis, catheter related infection Injury, Poisoning and Procedural Complications: Catheter related complication, skeletal fracture, subdural hematoma Investigations: Weight decreased Metabolism and Nutrition Disorders: Dehydration, hypocalcemia, hyperuricemia, hypokalemia, hyperkalemia, hyponatremia, hypernatremia Musculoskeletal and Connective Tissue Disorders: Arthralgia, back pain, bone pain, myalgia, pain in extremity Nervous System Disorders: Ataxia, coma, dizziness, dysarthria, dysesthesia, dysautonomia, encephalopathy, cranial palsy, grand mal convulsion, headache, hemorrhagic stroke, motor dysfunction, neuralgia, spinal cord compression, paralysis, postherpetic neuralgia, transient ischemic attack Psychiatric Disorders: Agitation, anxiety, confusion, insomnia, mental status change, psychotic disorder, suicidal ideation Renal and Urinary Disorders: Calculus renal, bilateral hydronephrosis, bladder spasm, hematuria, hemorrhagic cystitis, urinary incontinence, urinary retention, renal failure (acute and chronic), glomerular nephritis proliferative Respiratory, Thoracic and Mediastinal Disorders: Acute respiratory distress syndrome, aspiration pneumonia, atelectasis, chronic obstructive airways disease exacerbated, cough, dysphagia, dyspnea, dyspnea exertional, epistaxis, hemoptysis, hypoxia, lung infiltration, pleural effusion, pneumonitis, respiratory distress, pulmonary hypertension Skin and Subcutaneous Tissue disorders: Urticaria, face edema, rash (which may be pruritic), leukocytoclastic vasculitis, pruritus. Vascular Disorders: Cerebrovascular accident, cerebral hemorrhage, deep venous thrombosis, hypertension, peripheral embolism, pulmonary embolism, pulmonary hypertension Table 8 Table 9 Table 10 Table 11 6.2 Postmarketing Experience The following adverse reactions have been identified from the worldwide postmarketing experience with bortezomib. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure: Cardiac Disorders: Cardiac tamponade Ear and Labyrinth Disorders: Deafness bilateral Eye Disorders: Optic neuropathy, blindness, chalazion/blepharitis Gastrointestinal Disorders: Ischemic colitis Infections and Infestations: Progressive multifocal leukoencephalopathy (PML), ophthalmic herpes, herpes meningoencephalitis Nervous System Disorders: Posterior reversible encephalopathy syndrome (PRES, formerly RPLS), Guillain-Barré syndrome, demyelinating polyneuropathy Respiratory, Thoracic and Mediastinal Disorders: Acute diffuse infiltrative pulmonary disease Skin and Subcutaneous Tissue Disorders: Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), acute febrile neutrophilic dermatosis (Sweet's syndrome)

Contraindications

4 CONTRAINDICATIONS Bortezomib Injection is contraindicated in patients with hypersensitivity (not including local reactions) to bortezomib, boron, or mannitol. Reactions have included anaphylactic reactions [see Adverse Reactions (6.1)] . Bortezomib Injection is contraindicated for intrathecal administration. Fatal events have occurred with intrathecal administration of bortezomib. Patients with hypersensitivity (not including local reactions) to bortezomib, boron, or mannitol, including anaphylactic reactions. (4) Contraindicated for intrathecal administration. (4)

Description

11 DESCRIPTION Bortezomib Injection contains bortezomib which is a proteasome inhibitor. Bortezomib is a modified dipeptidyl boronic acid. The chemical name for bortezomib, the monomeric boronic acid, is [(1R)-3-methyl-1-[[(2S)-1-oxo-3-phenyl-2-[(pyrazinylcarbonyl) amino]propyl]amino]butyl] boronic acid. Bortezomib has the following chemical structure: The molecular weight is 384.24. The molecular formula is C 19 H 25 BN 4 O 4 . The solubility of bortezomib, as the monomeric boronic acid, in water is 3.3 to 3.8 mg/mL in a pH range of 2 to 6.5. Bortezomib Injection is available as a ready-to-use sterile solution for intravenous injection: Each mL of the 3.5 mg/3.5 mL (1 mg/mL) strength contains 1 mg of bortezomib, 10 mg mannitol, 0.82 mg sodium acetate, 20 mg dimethyl sulfoxide, in water for injection in a 5 mL single-dose vial. The pH may have been adjusted with hydrochloric acid or sodium hydroxide. Each mL of the 3.5 mg/1.4 mg/mL (2.5 mg/mL) strength contains 2.5 mg of bortezomib, 25 mg mannitol, 0.82 mg sodium acetate, 22 mg dimethyl sulfoxide, in water for injection in a 2 mL single-dose vial. The pH may have been adjusted with hydrochloric acid or sodium hydroxide. bortezomib-structure

Dosage And Administration

2 DOSAGE AND ADMINISTRATION For intravenous use only. (2.1, 2.10) The recommended starting dose of Bortezomib Injection is 1.3 mg/m 2 administered as a 3 to 5 second bolus intravenous injection. (2.2, 2.4, 2.6) Retreatment for multiple myeloma: May retreat starting at the last tolerated dose. (2.6) Hepatic Impairment: Use a lower starting dose for patients with moderate or severe hepatic impairment. (2.8) Dose must be individualized to prevent overdose. (2.10) 2.1 Important Dosing Guidelines Bortezomib Injection is a ready-to-use sterile solution for intravenous use only. Do not administer Bortezomib Injection by any other route. The recommended starting dose of Bortezomib Injection is 1.3 mg/m 2 . Bortezomib Injection is administered intravenously at a concentration of 1 mg/mL or 2.5 mg/mL [see Dosage and Administration (2.9 and 2.10)]. Bortezomib Injection retreatment may be considered for patients with multiple myeloma who had previously responded to treatment with bortezomib and who have relapsed at least six months after completing prior bortezomib treatment. Treatment may be started at the last tolerated dose [see Dosage and Administration (2.6)] . Administer Bortezomib Injection as a 3 to 5 second bolus intravenous injection. 2.2 Dosage in Previously Untreated Multiple Myleoma Bortezomib Injection is administered in combination with oral melphalan and oral prednisone for 9, six-week treatment cycles as shown in Table 1. In Cycles 1 to 4, Bortezomib Injection is administered twice weekly (Days 1, 4, 8, 11, 22, 25, 29 and 32). In Cycles 5 to 9, Bortezomib Injection is administered once weekly (Days 1, 8, 22 and 29). At least 72 hours should elapse between consecutive doses of Bortezomib Injection. Table 1 2.3 Dose Modification Guidelines for Bortezomib Injection When Given in Combination with Melphalan and Prednisone Prior to initiating any cycle of therapy with Bortezomib Injection in combination with melphalan and prednisone: Platelet count should be at least 70 × 10 9 /L and the absolute neutrophil count (ANC) should be at least 1 × 10 9 /L Nonhematological toxicities should have resolved to Grade 1 or baseline For information concerning melphalan and prednisone, see manufacturer's prescribing information. Dose modifications guidelines for peripheral neuropathy are provided [see Dosage and Administration (2.7)] . Table 2 2.4 Dosage in Previously Untreated Mantle Cell Lymphoma Bortezomib Injection (1.3 mg/m 2 ) is administered intravenously in combination with intravenous rituximab, cyclophosphamide, doxorubicin and oral prednisone (VcR-CAP) for 6, three week treatment cycles as shown in Table 3. Bortezomib Injection is administered first followed by rituximab. Bortezomib Injection is administered twice weekly for two weeks (Days 1, 4, 8, and 11) followed by a ten day rest period on Days 12 to 21. For patients with a response first documented at cycle 6, two additional VcR-CAP cycles are recommended. At least 72 hours should elapse between consecutive doses of Bortezomib Injection. Table 3 2.5 Dose Modification Guidelines for Bortezomib Injection When Given in Combination with Rituximab, Cyclophosphamide, Doxorubicin and Prednisone Prior to the first day of each cycle (other than Cycle 1): Platelet count should be at least 100 × 10 9 /L and absolute neutrophil count (ANC) should be at least 1.5 × 100 9 /L Hemoglobin should be at least 8 g/dL (at least 4.96 mmol/L) Nonhematologic toxicity should have recovered to Grade 1 or baseline Interrupt Bortezomib Injection treatment at the onset of any Grade 3 hematologic or nonhematological toxicities, excluding neuropathy [see Table 5, Warnings and Precautions (5)] . For dose adjustments, see Table 4 below. For information concerning rituximab, cyclophosphamide, doxorubicin and prednisone, see manufacturer's prescribing information. Table 4 2.6 Dosage and Dose Modifications for Relapsed Multiple Myeloma and Relapsed Mantle Cell Lymphoma Bortezomib Injection (1.3 mg/m 2 /dose) is administered twice weekly for two weeks (Days 1, 4, 8, and 11) followed by a ten day rest period (Days 12 to 21). For extended therapy of more than eight cycles, Bortezomib Injection may be administered on the standard schedule or, for relapsed multiple myeloma, on a maintenance schedule of once weekly for four weeks (Days 1, 8, 15, and 22) followed by a 13 day rest period (Days 23 to 35) [see Clinical Studies (14)] . At least 72 hours should elapse between consecutive doses of Bortezomib Injection. Patients with multiple myeloma who have previously responded to treatment with bortezomib (either alone or in combination) and who have relapsed at least six months after their prior bortezomib therapy may be started on Bortezomib Injection at the last tolerated dose. Retreated patients are administered Bortezomib Injection twice weekly (Days 1, 4, 8, and 11) every three weeks for a maximum of eight cycles. At least 72 hours should elapse between consecutive doses of Bortezomib Injection. Bortezomib Injection may be administered either as a single agent or in combination with dexamethasone [see Clinical Studies (14.1)] . Bortezomib Injection therapy should be withheld at the onset of any Grade 3 nonhematological or Grade 4 hematological toxicities excluding neuropathy as discussed below [see Warnings and Precautions (5)] . Once the symptoms of the toxicity have resolved, Bortezomib Injection therapy may be reinitiated at a 25% reduced dose (1.3 mg/m 2 /dose reduced to 1 mg/m 2 /dose; 1 mg/m 2 /dose reduced to 0.7 mg/m 2 /dose). For dose modifications guidelines for peripheral neuropathy see section 2.7. 2.7 Dose Modifications for Peripheral Neuropathy Patients with preexisting severe neuropathy should be treated with Bortezomib Injection only after careful risk-benefit assessment. Patients experiencing new or worsening peripheral neuropathy during Bortezomib Injection therapy may require a decrease in the dose and/or a less dose-intense schedule. For dose or schedule modification guidelines for patients who experience Bortezomib Injection-related neuropathic pain and/or peripheral neuropathy see Table 5. Table 5 2.8 Dosage in Patients with Hepatic Impairment Do not adjust the starting dose for patients with mild hepatic impairment. Start patients with moderate or severe hepatic impairment at a reduced dose of 0.7 mg/m 2 per injection during the first cycle, and consider subsequent dose escalation to 1 mg/m 2 or further dose reduction to 0.5 mg/m 2 based on patient tolerance (see Table 6) [see Use in Specific Populations (8.7), Clinical Pharmacology (12.3)] . Table 6 2.9 Administration Precautions The drug quantity contained in one vial may exceed the usual dose required. Caution should be used in calculating the dose to prevent overdose [see Dosage and Administration (2.10)] . Bortezomib Injection is a hazardous drug. Follow applicable special handling and disposal procedures. 1 2.10 Instructions for Intravenous Administration Dose must be individualized to prevent overdosage. After determining patient body surface area (BSA) in square meters, use the following equations to calculate the total volume (mL) of Bortezomib Injection to be administered based on the drug product concentration: A sticker that indicates the route of administration is provided with each Bortezomib Injection vial. Place this sticker directly on the syringe once the required volume of Bortezomib Injection has been withrdrawn from the vial to help alert the practitioners of the correct route of administration for Bortezomib Injection Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. If any discoloration or particulate matter is observed, the product should not be used. Discard any unused portion. Stability Unopened vials of Bortezomib Injection are stable until the date indicated on the package when stored refrigerated at 2 to 8ºC (36 ºF to 46 °F) in the original package protected from light. Bortezomib Injection contains no antimicrobial preservative. Unopened vials may be stored at room temperature (20ºC to 25ºC [68 ºF to 77 ºF]) for up to 7 days prior to use. Instructions for Use

Indications And Usage

1 INDICATIONS AND USAGE Bortezomib injection is a proteasome inhibitor indicated for: treatment of adult patients with multiple myeloma (1.1) treatment of adult patients with mantle cell lymphoma (1.2) 1.1 Multiple Myeloma Bortezomib Injection is indicated for the treatment of adult patients with multiple myeloma. 1.2 Mantle Cell Lymphoma Bortezomib Injection is indicated for the treatment of adult patients with mantle cell lymphoma.

Overdosage

10 OVERDOSAGE There is no known specific antidote for Bortezomib Injection overdosage. In humans, fatal outcomes following the administration of more than twice the recommended therapeutic dose have been reported, which were associated with the acute onset of symptomatic hypotension (5.2) and thrombocytopenia (5.7). In the event of an overdosage, the patient's vital signs should be monitored and appropriate supportive care given. Studies in monkeys and dogs showed that intravenous bortezomib doses as low as two times the recommended clinical dose on a mg/m 2 basis were associated with increases in heart rate, decreases in contractility, hypotension, and death. In dog studies, a slight increase in the corrected QT interval was observed at doses resulting in death. In monkeys, doses of 3.0 mg/m 2 and greater (approximately twice the recommended clinical dose) resulted in hypotension starting at one hour postadministration, with progression to death in 12 to 14 hours following drug administration.

Drug Interactions

7 DRUG INTERACTIONS Strong CYP3A4 Inhibitors: Closely monitor patients with concomitant use. (7.1) Strong CYP3A4 Inducers: Avoid concomitant use. (7.1) 7.1 Effects of Other Drugs on Bortezomib Injection Strong CYP3A4 Inducers Coadministration with a strong CYP3A4 inducer decreases the exposure of bortezomib [see Clinical Pharmacology (12.3)] which may decrease Bortezomib Injection efficacy. Avoid coadministration with strong CYP3A4 inducers. Strong CYP3A4 Inhibitors Coadministration with a strong CYP3A4 inhibitor increases the exposure of bortezomib [see Clinical Pharmacology (12.3)] which may increase the risk of Bortezomib Injection toxicities. Monitor patients for signs of bortezomib toxicity and consider a Bortezomib Injection dose reduction if Bortezomib Injection must be given in combination with strong CYP3A4 inhibitors. 7.2 Drugs Without Clinically Significant Interactions with Bortezomib Injection No clinically significant drug interactions have been observed when bortezomib was coadministered with dexamethasone, omeprazole, or melphalan in combination with prednisone [see Clinical Pharmacology (12.3)] .

Clinical Pharmacology

12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin-proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro . Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma. 12.2 Pharmacodynamics Following twice weekly administration of 1 mg/m 2 and 1.3 mg/m 2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed five minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 and 1.3 mg/m 2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m 2 and 1.3 mg/m 2 dose regimens, respectively. 12.3 Pharmacokinetics Following intravenous administration of 1 mg/m 2 and 1.3 mg/m 2 doses, the mean maximum plasma concentrations of bortezomib (Cmax) after the first dose (Day 1) were 57 and 112 ng/mL, respectively. When administered twice weekly, the mean maximum observed plasma concentrations ranged from 67 to 106 ng/mL for the 1 mg/m 2 dose and 89 to 120 ng/mL for the 1.3 mg/m 2 dose. Distribution The mean distribution volume of bortezomib ranged from approximately 498 to 1884 L/m 2 following single- or repeat-dose administration of 1 mg/m 2 or 1.3 mg/m 2 to patients with multiple myeloma. The binding of bortezomib to human plasma proteins averaged 83% over the concentration range of 100 to 1000 ng/mL. Elimination The mean elimination half-life of bortezomib upon multiple dosing ranged from 40 to 193 hours after the 1 mg/m 2 dose and 76 to 108 hours after the 1.3 mg/m 2 dose. The mean total body clearances were 102 and 112 L/h following the first dose for doses of 1 mg/m 2 and 1.3 mg/m 2 , respectively, and ranged from 15 to 32 L/h following subsequent doses for doses of 1 and 1.3 mg/m 2 , respectively. Metabolism Bortezomib is primarily oxidatively metabolized to several inactive metabolites in vitro via cytochrome P450 (CYP) enzymes 3A4, CYP2C19, and CYP1A2, and to a lesser extent by CYP2D6 and CYP2C9. Excretion The pathways of elimination of bortezomib have not been characterized in humans. Specific Populations No clinically significant differences in the pharmacokinetics of bortezomib were observed based on age, sex, or renal impairment (including patients administered bortezomib after dialysis). The effect of race on bortezomib pharmacokinetics is unknown. Patients with Hepatic Impairment Following administration of bortezomib doses ranging from 0.5 to 1.3 mg/m 2 , mild (total bilirubin ≤1× ULN and AST > ULN, or total bilirubin >1 to 1.5× ULN and any AST) hepatic impairment did not alter dose-normalized bortezomib AUC when compared to patients with normal hepatic function. Dose normalized mean bortezomib AUC increased by approximately 60% in patients with moderate (total bilirubin >1.5 to 3× ULN and any AST) or severe (total bilirubin >3× ULN and any AST) hepatic impairment. A lower starting dose is recommended in patients with moderate or severe hepatic impairment. Drug Interaction Studies Clinical Studies No clinically significant differences in bortezomib pharmacokinetics were observed when coadministered with dexamethasone (weak CYP3A4 inducer), omeprazole (strong CYP2C19 inhibitor), or melphalan in combination with prednisone. Strong CYP3A4 inhibitor Coadministration with ketoconazole (strong CYP3A4 inhibitor) increased bortezomib exposure by 35%. Strong CYP3A4 inducer Coadministration with rifampin (strong CYP3A4 inducer) decreased bortezomib exposure by approximately 45%. In Vitro Studies Bortezomib may inhibit CYP2C19 activity and increase exposure to drugs that are substrates for this enzyme.

Mechanism Of Action

12.1 Mechanism of Action Bortezomib is a reversible inhibitor of the chymotrypsin-like activity of the 26S proteasome in mammalian cells. The 26S proteasome is a large protein complex that degrades ubiquitinated proteins. The ubiquitin-proteasome pathway plays an essential role in regulating the intracellular concentration of specific proteins, thereby maintaining homeostasis within cells. Inhibition of the 26S proteasome prevents this targeted proteolysis, which can affect multiple signaling cascades within the cell. This disruption of normal homeostatic mechanisms can lead to cell death. Experiments have demonstrated that bortezomib is cytotoxic to a variety of cancer cell types in vitro . Bortezomib causes a delay in tumor growth in vivo in nonclinical tumor models, including multiple myeloma.

Pharmacodynamics

12.2 Pharmacodynamics Following twice weekly administration of 1 mg/m 2 and 1.3 mg/m 2 bortezomib doses, the maximum inhibition of 20S proteasome activity (relative to baseline) in whole blood was observed five minutes after drug administration. Comparable maximum inhibition of 20S proteasome activity was observed between 1 and 1.3 mg/m 2 doses. Maximal inhibition ranged from 70% to 84% and from 73% to 83% for the 1 mg/m 2 and 1.3 mg/m 2 dose regimens, respectively.

Effective Time

20220818

Version

1

Dosage Forms And Strengths

3 DOSAGE FORMS AND STRENGTHS Injection: Bortezomib Injection is a clear, colorless to slightly yellow sterile solution available as: 3.5 mg/3.5 mL (1 mg/mL) in a ready-to-use single-dose vial 3.5 mg/1.4 mL (2.5 mg/mL) in a ready-to-use single-dose vial Injection 3.5 mg/3.5 mL (1 mg/mL) in a single-dose vial 3.5 mg/1.4 mL (2.5 mg/mL) in a single-dose vial

Spl Product Data Elements

Bortezomib bortezomib MANNITOL SODIUM ACETATE DIMETHYL SULFOXIDE HYDROCHLORIC ACID SODIUM HYDROXIDE BORTEZOMIB BORTEZOMIB Bortezomib bortezomib MANNITOL SODIUM ACETATE DIMETHYL SULFOXIDE HYDROCHLORIC ACID SODIUM HYDROXIDE BORTEZOMIB BORTEZOMIB

Animal Pharmacology And Or Toxicology

13.2 Animal Toxicology and/or Pharmacology Cardiovascular Toxicity Studies in monkeys showed that administration of dosages approximately twice the recommended clinical dose resulted in heart rate elevations, followed by profound progressive hypotension, bradycardia, and death 12 to 14 hours post dose. Doses ≥1.2 mg/m 2 induced dose-proportional changes in cardiac parameters. Bortezomib has been shown to distribute to most tissues in the body, including the myocardium. In a repeated dosing toxicity study in the monkey, myocardial hemorrhage, inflammation, and necrosis were also observed. Chronic Administration In animal studies at a dose and schedule similar to that recommended for patients (twice weekly dosing for two weeks followed by one week rest), toxicities observed included severe anemia and thrombocytopenia, and gastrointestinal, neurological and lymphoid system toxicities. Neurotoxic effects of bortezomib in animal studies included axonal swelling and degeneration in peripheral nerves, dorsal spinal roots, and tracts of the spinal cord. Additionally, multifocal hemorrhage and necrosis in the brain, eye, and heart were observed.

Carcinogenesis And Mutagenesis And Impairment Of Fertility

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenicity studies have not been conducted with bortezomib. Bortezomib showed clastogenic activity (structural chromosomal aberrations) in the in vitro chromosomal aberration assay using Chinese hamster ovary cells. Bortezomib was not genotoxic when tested in the in vitro mutagenicity assay (Ames test) and in vivo micronucleus assay in mice. Fertility studies with bortezomib were not performed but evaluation of reproductive tissues has been performed in the general toxicity studies. In the six month rat toxicity study, degenerative effects in the ovary were observed at doses ≥0.3 mg/m 2 (one-fourth of the recommended clinical dose), and degenerative changes in the testes occurred at 1.2 mg/m 2 .

Nonclinical Toxicology

13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenicity studies have not been conducted with bortezomib. Bortezomib showed clastogenic activity (structural chromosomal aberrations) in the in vitro chromosomal aberration assay using Chinese hamster ovary cells. Bortezomib was not genotoxic when tested in the in vitro mutagenicity assay (Ames test) and in vivo micronucleus assay in mice. Fertility studies with bortezomib were not performed but evaluation of reproductive tissues has been performed in the general toxicity studies. In the six month rat toxicity study, degenerative effects in the ovary were observed at doses ≥0.3 mg/m 2 (one-fourth of the recommended clinical dose), and degenerative changes in the testes occurred at 1.2 mg/m 2 . 13.2 Animal Toxicology and/or Pharmacology Cardiovascular Toxicity Studies in monkeys showed that administration of dosages approximately twice the recommended clinical dose resulted in heart rate elevations, followed by profound progressive hypotension, bradycardia, and death 12 to 14 hours post dose. Doses ≥1.2 mg/m 2 induced dose-proportional changes in cardiac parameters. Bortezomib has been shown to distribute to most tissues in the body, including the myocardium. In a repeated dosing toxicity study in the monkey, myocardial hemorrhage, inflammation, and necrosis were also observed. Chronic Administration In animal studies at a dose and schedule similar to that recommended for patients (twice weekly dosing for two weeks followed by one week rest), toxicities observed included severe anemia and thrombocytopenia, and gastrointestinal, neurological and lymphoid system toxicities. Neurotoxic effects of bortezomib in animal studies included axonal swelling and degeneration in peripheral nerves, dorsal spinal roots, and tracts of the spinal cord. Additionally, multifocal hemorrhage and necrosis in the brain, eye, and heart were observed.

Application Number

NDA215331

Brand Name

Bortezomib

Generic Name

bortezomib

Product Ndc

72266-243

Product Type

HUMAN PRESCRIPTION DRUG

Route

INTRAVENOUS

Package Label Principal Display Panel

Principal Display Panel ​NDC 72266-243-01 BORTEZOMIB (bortezomib) INJECTION 3.5 mg per 3.5 mL (1 mg per mL) FOR INTRAVENOUS USE ONLY READY-to-use Vial ​SINGLE DOSE VIAL DISCARD UNUSED PORTION CAUTION: Hazardous Agent Vial Label 3.5 mg/ 3.5 mL Carton Label 3.5 mg/ 3.5 mL ​NDC 72266-244-01 BORTEZOMIB ​ ​(bortezomib) INJECTION 3.5 mg per 1.4 mL (2.5 mg per mL) FOR INTRAVENOUS USE ONLY ​Ready-to-use Vial CAUTION: Hazardous Agent Vial Label 3.5 mg/ 1.4 mL Carton Label 3.5 mg/ 1.4 mL Bortezomib Injection 3.5 mg per 3.5 mL Carton Label 1 mg Bortezomib Injection 3.5 mg per 1.4 mL Carton Label 2.5 mg

Spl Unclassified Section

17 PATIENT COUNSELING INFORMATION Discuss the following with patients prior to treatment with Bortezomib Injection: Peripheral Neuropathy Advise patients to report the development or worsening of sensory and motor peripheral neuropathy to their healthcare provider [ see Warnings and Precautions (5.1) ] . Hypotension Advise patients to drink adequate fluids to avoid dehydration and to report symptoms of hypotension to their healthcare provider [see Warnings and Precautions (5.2)]. Instruct patients to seek medical advice if they experience symptoms of dizziness, light headedness or fainting spells, or muscle cramps. Cardiac Toxicity Advise patients to report signs or symptoms of heart failure to their healthcare provider [see Warnings and Precautions (5.3)] . Pulmonary Toxicity Advise patients to report symptoms of ARDS, pulmonary hypertension, pneumonitis, and pneumonia immediately to their healthcare provider [see Warnings and Precautions (5.4)] . Posterior Reversible Encephalopathy Syndrome (PRES) Advise patients to seek immediate medical attention for signs or symptoms of PRES [see Warnings and Precautions (5.5)]. Gastrointestinal Toxicity Advise patients to report symptoms of gastrointestinal toxicity to their healthcare provider and to drink adequate fluids to avoid dehydration. Instruct patients to seek medical advice if they experience symptoms of dizziness, light headedness or fainting spells, or muscle cramps [see Warnings and Precautions (5.6)]. Thrombocytopenia/Neutropenia Advise patients to report signs or symptoms of bleeding or infection immediately to their healthcare provider [see Warnings and Precautions (5.7)] . Tumor Lysis Syndrome Advise patients of the risk of tumor lysis syndrome and to drink adequate fluids to avoid dehydration [see Warnings and Precautions (5.8)]. Hepatic Toxicity Advise patients to report signs or symptoms of hepatic toxicity to their healthcare provider [see Warnings and Precautions (5.9)]. Thrombotic Microangiopathy Advise patients to seek immediate medical attention if any signs or symptoms of thrombotic microangiopathy occur [see Warnings and Precautions (5.10)]. Ability to Drive or Operate Machinery or Impairment of Mental Ability Bortezomib Injection may cause fatigue, dizziness, syncope, orthostatic/postural hypotension. Advise patients not to drive or operate machinery if they experience any of these symptoms [see Warnings and Precautions (5.2, 5.5)] . Embryo-fetal Toxicity Advise females of the potential risk to the fetus and to avoid pregnancy and use effective contraception during treatment with Bortezomib Injection and for seven months following the last dose. Advise male patients with female partners of reproductive potential to use effective contraception during treatment with Bortezomib Injection and for four months following the last dose. Instruct patients to report pregnancy to their physicians immediately if they or their female partner becomes pregnant during treatment or within seven months following last dose [see Warnings and Precautions (5.11)] . Lactation Advise patients to avoid breastfeeding while receiving Bortezomib Injection and for two months after last dose [see Use in Specific Populations (8.2)] . Concomitant Medications Advise patients to speak with their physicians about any other medication they are currently taking. Diabetic Patients Advise patients to check their blood sugar frequently if using an oral antidiabetic medication and to notify their physicians of any changes in blood sugar level. Dermal Advise patients to contact their physicians if they experience rash, severe injection site reactions [see Dosage and Administration (2.9)] , or skin pain. Discuss with patients the option for antiviral prophylaxis for herpes virus infection [see Adverse Reactions (6.1)] . Other Instruct patients to contact their physicians if they develop an increase in blood pressure, bleeding, fever, constipation, or decreased appetite.

Clinical Studies

14 CLINICAL STUDIES 14.1 Multiple Myeloma Randomized, Open-Label Clinical Study in Patients with Previously Untreated Multiple Myeloma A prospective, international, randomized (1:1), open-label clinical study (NCT00111319) of 682 patients was conducted to determine whether bortezomib administered intravenously (1.3 mg/m 2 ) in combination with melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) resulted in improvement in time to progression (TTP) when compared to melphalan (9 mg/m 2 ) and prednisone (60 mg/m 2 ) in patients with previously untreated multiple myeloma. Treatment was administered for a maximum of nine cycles (approximately 54 weeks) and was discontinued early for disease progression or unacceptable toxicity. Antiviral prophylaxis was recommended for patients on the bortezomib study arm. The median age of the patients in the study was 71 years (48;91), 50% were male, 88% were Caucasian and the median Karnofsky performance status score for the patients was 80 (60;100). Patients had IgG/IgA/Light chain myeloma in 63%/25%/8% instances, a median hemoglobin of 105 g/L (64;165), and a median platelet count of 221,500 /microliter (33,000;587,000). Efficacy results for the trial are presented in Table 12. At a prespecified interim analysis (with median follow-up of 16.3 months), the combination of bortezomib, melphalan and prednisone therapy resulted in significantly superior results for time to progression, progression-free survival, overall survival and response rate. Further enrollment was halted, and patients receiving melphalan and prednisone were offered bortezomib in addition. A later, prespecified analysis of overall survival (with median follow- up of 36.7 months with a hazard ratio of 0.65, 95% CI: 0.51, 0.84) resulted in a statistically significant survival benefit for the bortezomib, melphalan and prednisone treatment arm despite subsequent therapies including bortezomib based regimens. In an updated analysis of overall survival based on 387 deaths (median follow-up 60.1 months), the median overall survival for the bortezomib, melphalan and prednisone treatment arm was 56.4 months and for the melphalan and prednisone treatment arm was 43.1 months, with a hazard ratio of 0.695 (95% CI: 0.57, 0.85). TTP was statistically significantly longer on the bortezomib, melphalan and prednisone arm ( see Figure 1 ). (median follow-up 16.3 months) Overall survival was statistically significantly longer on the bortezomib, melphalan and prednisone arm ( see Figure 2 ). (median follow-up 60.1 months) Randomized, Clinical Study in Relapsed Multiple Myeloma of Bortezomib vs Dexamethasone A prospective Phase 3, international, randomized (1:1), stratified, open-label clinical study (NCT00048230) enrolling 669 patients was designed to determine whether bortezomib resulted in improvement in time to progression (TTP) compared to high-dose dexamethasone in patients with progressive multiple myeloma following 1 to 3 prior therapies. Patients considered to be refractory to prior high-dose dexamethasone were excluded as were those with baseline Grade ≥2 peripheral neuropathy or platelet counts <50,000/µL. A total of 627 patients were evaluable for response. Stratification factors were based on the number of lines of prior therapy the patient had previously received (one previous line vs more than one line of therapy), time of progression relative to prior treatment (progression during or within six months of stopping their most recent therapy vs relapse >6 months after receiving their most recent therapy), and screening beta2-microglobulin levels (≤2.5 mg/L vs >2.5 mg/L). Baseline patient and disease characteristics are summarized in Table 13. Patients in the bortezomib treatment group were to receive 8, three week treatment cycles followed by 3, five week treatment cycles of bortezomib. Patients achieving a CR were treated for four cycles beyond first evidence of CR. Within each three week treatment cycle, bortezomib 1.3 mg/m 2 /dose alone was administered by intravenous bolus twice weekly for two weeks on Days 1, 4, 8, and 11 followed by a ten day rest period (Days 12 to 21). Within each five week treatment cycle, bortezomib 1.3 mg/m 2 /dose alone was administered by intravenous bolus once weekly for four weeks on Days 1, 8, 15, and 22 followed by a 13 day rest period (Days 23 to 35) [see Dosage and Administration (2.2)] . Patients in the dexamethasone treatment group were to receive 4 five week treatment cycles followed by 5, four week treament cycles. Within each five week treatment cycle, dexamethasone 40 mg/day PO was administered once daily on Days 1 to 4, 9 to 12, and 17 to 20 followed by a 15 day rest period (Days 21 to 35). Within each four week treatment cycle, dexamethasone 40 mg/day PO was administered once daily on Days 1 to 4 followed by a 24 day rest period (Days 5 to 28). Patients with documented progressive disease on dexamethasone were offered bortezomib at a standard dose and schedule on a companion study. Following a preplanned interim analysis of time to progression, the dexamethasone arm was halted and all patients randomized to dexamethasone were offered bortezomib, regardless of disease status. In the bortezomib arm, 34% of patients received at least one bortezomib dose in all eight of the three week cycles of therapy, and 13% received at least one dose in all 11 cycles. The average number of bortezomib doses during the study was 22, with a range of 1 to 44. In the dexamethasone arm, 40% of patients received at least one dose in all four of the five week treatment cycles of therapy, and 6% received at least one dose in all nine cycles. The time to event analyses and response rates from the relapsed multiple myeloma study are presented in Table 14. Response and progression were assessed using the European Group for Blood and Marrow Transplantation (EBMT) criteria. Complete response (CR) required <5% plasma cells in the marrow, 100% reduction in M-protein, and a negative immunofixation test (IF-). Partial response (PR) requires ≥50% reduction in serum myeloma protein and ≥90% reduction of urine myeloma protein on at least two occasions for a minimum of at least six weeks along with stable bone disease and normal calcium. Near complete response (nCR) was defined as meeting all the criteria for complete response including 100% reduction in M-protein by protein electrophoresis; however, M-protein was still detectable by immunofixation (IF + ). TTP was statistically significantly longer on the Bortezomib Injection arm ( see Figure 3 ). As shown in Figure 4 bortezomib had a significant survival advantage relative to dexamethasone (p<0.05). The median follow-up was 8.3 months. For the 121 patients achieving a response (CR or PR) on the bortezomib arm, the median duration was 8.0 months (95% CI: 6.9, 11.5 months) compared to 5.6 months (95% CI: 4.8, 9.2 months) for the 56 responders on the dexamethasone arm. The response rate was significantly higher on the bortezomib arm regardless of beta 2 -microglobulin levels at baseline. A Randomized Phase 2 Dose-Response Study in Relapsed Multiple Myeloma An open-label, multicenter study randomized 54 patients with multiple myeloma who had progressed or relapsed on or after front-line therapy to receive bortezomib 1 mg/m 2 or 1.3 mg/m 2 intravenous bolus twice weekly for two weeks on Days 1, 4, 8, and 11 followed by a ten day rest period (Days 12 to 21). The median duration of time between diagnosis of multiple myeloma and first dose of bortezomib on this trial was two years, and patients had received a median of one prior line of treatment (median of three prior therapies). A single complete response was seen at each dose. The overall response rates (CR + PR) were 30% (8/27) at 1 mg/m 2 and 38% (10/26) at 1.3 mg/m 2 . A Phase 2 Open-Label Extension Study in Relapsed Multiple Myeloma Patients from the two Phase 2 studies, who in the investigators' opinion would experience additional clinical benefit, continued to receive bortezomib beyond 8 cycles on an extension study. Sixty-three (63) patients from the Phase 2 multiple myeloma studies were enrolled and received a median of seven additional cycles of bortezomib therapy for a total median of 14 cycles (range 7 to 32). The overall median dosing intensity was the same in both the parent protocol and extension study. Sixty-seven percent (67%) of patients initiated the extension study at the same or higher dose intensity at which they completed the parent protocol, and 89% of patients maintained the standard three week dosing schedule during the extension study. No new cumulative or new long-term toxicities were observed with prolonged bortezomib treatment [see Adverse Reactions (6.1)] . A Single-Arm Trial of Retreatment in Relapsed Multiple Myeloma A single arm, open-label trial (NCT00431769) was conducted to determine the efficacy and safety of retreatment with bortezomib. One hundred and thirty patients (≥18 years of age) with multiple myeloma who previously had at least partial response on a bortezomib-containing regimen (median of two prior lines of therapy [range 1 to 7]) were retreated upon progression with bortezomib administered intravenously. Patients were excluded from trial participation if they had peripheral neuropathy or neuropathic pain of Grade ≥2. At least six months after prior bortezomib therapy, bortezomib was restarted at the last tolerated dose of 1.3 mg/m 2 (n=93) or ≤1 mg/m 2 (n=37) and given on Days 1, 4, 8 and 11 every three weeks for maximum of eight cycles either as single agent or in combination with dexamethasone in accordance with the standard of care. Dexamethasone was administered in combination with bortezomib to 83 patients in Cycle 1 with an additional 11 patients receiving dexamethasone during the course of bortezomib retreatment cycles. The primary endpoint was best confirmed response to retreatment as assessed by European Group for Blood and Marrow Transplantation (EBMT) criteria. Fifty of the 130 patients achieved a best confirmed response of Partial Response or better for an overall response rate of 38.5% (95% CI: 30.1, 47.4). One patient achieved a Complete Response and 49 achieved Partial Response. In the 50 responding patients, the median duration of response was 6.5 months and the range was 0.6 to 19.3 months. Table 12 Figure 1 Figure 2 Table 13 Table 14 Figure 3 Figure 4 14.2 Mantle Cell Lymphoma A Randomized, Open-Label Clinical Study in Patients with Previously Untreated Mantle Cell Lymphoma A randomized, open-label, Phase 3 study (NCT00722137) was conducted in 487 adult patients with previously untreated mantle cell lymphoma (Stage II, III or IV) who were ineligible or not considered for bone marrow transplantation to determine whether bortezomib administered in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone (VcR-CAP) resulted in improvement in progression free survival (PFS) when compared to the combination of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). This clinical study utilized independent pathology confirmation and independent radiologic response assessment. Patients in the VcR-CAP treatment arm received bortezomib (1.3 mg/m 2 ) administered intravenously on Days 1, 4, 8, and 11 (rest period days 12 to 21); rituximab (375 mg/m 2 ) on Day 1; cyclophosphamide (750 mg/m 2 ) on Day 1; doxorubicin (50 mg/m 2 ) on Day 1; and prednisone (100 mg/m 2 ) on Day 1 through Day 5 of the 21 day treatment cycle. For patients with a response first documented at Cycle six, two additional treatment cycles were allowed. Median patient age was 66 years, 74% were male, 66% were Caucasian and 32% were Asian. Sixty nine percent of patients had a positive bone marrow aspirate and/or a positive bone marrow biopsy for MCL, 54% of patients had an International Prognostic Index (IPI) score of three (high-intermediate) or higher and 76% had Stage IV disease. The majority of the patients in both groups received six or more cycles of treatment, 84% in the VcR- CAP group and 83% in the R-CHOP group. Median number of cycles received by patients in both treatment arms was six with 17% of patients in the R-CHOP group and 14% of subjects in the VcR-CAP group receiving up to two additional cycles. The efficacy results for PFS, CR and ORR with a median follow-up of 40 months are presented in Table 15. The response criteria used to assess efficacy were based on the International Workshop to Standardize Response Criteria for Non-Hodgkin's Lymphoma (IWRC). Final overall survival results at a median follow up of 78.5 months are also presented in Table 15 and Figure 6. The combination of VcR- CAP resulted in statistically significant prolongation of PFS compared with R-CHOP ( see Table 18, Figure 5 ). Key: R-CHOP=rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; VcR- CAP=bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone Key: R-CHOP=rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; VcR-CAP= bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone. A Phase 2 Single-arm Clinical Study in Relapsed Mantle Cell Lymphoma After Prior Therapy The safety and efficacy of bortezomib in relapsed or refractory mantle cell lymphoma were evaluated in an open-label, single-arm, multicenter study (NCT00063713) of 155 patients with progressive disease who had received at least one prior therapy. The median age of the patients was 65 years (42, 89), 81% were male, and 92% were Caucasian. Of the total, 75% had one or more extra-nodal sites of disease, and 77% were Stage 4. In 91% of the patients, prior therapy included all of the following: an anthracycline or mitoxantrone, cyclophosphamide, and rituximab. A total of thirty seven percent (37%) of patients were refractory to their last prior therapy. An intravenous bolus injection of bortezomib 1.3 mg/m 2 /dose was administered twice weekly for two weeks on Days 1, 4, 8, and 11 followed by a ten day rest period (Days 12 to 21) for a maximum of 17 treatment cycles. Patients achieving a CR or CRu were treated for four cycles beyond first evidence of CR or CRu. The study employed dose modifications for toxicity [see Dosage and Administration (2.6, 2.7)] . Responses to bortezomib are shown in Table 19. Response rates to bortezomib were determined according to the International Workshop Response Criteria (IWRC) based on independent radiologic review of CT scans. The median number of cycles administered across all patients was four; in responding patients the median number of cycles was eight. The median time to response was 40 days (range 31 to 204 days). The median duration of follow-up was more than 13 months. Table 15 Figure 5 Figure 6 Table 16

References

15 REFERENCES 1. "OSHA Hazardous Drugs" OSHA. http://www.osha.gov/SLTC/hazardousdrugs/index.html

Geriatric Use

8.5 Geriatric Use Of the 669 patients enrolled in the relapsed multiple myeloma study, 245 (37%) were 65 years of age or older: 125 (38%) on the bortezomib arm and 120 (36%) on the dexamethasone arm. Median time to progression and median duration of response for patients ≥65 were longer on bortezomib compared to dexamethasone [5.5 mo vs 4.3 mo, and 8.0 mo vs 4.9 mo, respectively]. On the bortezomib arm, 40% (n=46) of evaluable patients aged ≥65 experienced response (CR+PR) vs 18% (n=21) on the dexamethasone arm. The incidence of Grade 3 and 4 events was 64%, 78% and 75% for bortezomib patients ≤50, 51 to 64 and ≥65 years old, respectively [see Adverse Reactions (6.1); Clinical Studies (14.1)] . No overall differences in safety or effectiveness were observed between patients ≥age 65 and younger patients receiving bortezomib; but greater sensitivity of some older individuals cannot be ruled out.

Pediatric Use

8.4 Pediatric Use Safety and effectiveness have not been established in pediatric patients. The activity and safety of bortezomib in combination with intensive reinduction chemotherapy was evaluated in pediatric and young adult patients with lymphoid malignancies (pre-B cell ALL 77%, 16% with T-cell ALL, and 7% T-cell lymphoblastic lymphoma (LL)), all of whom relapsed within 36 months of initial diagnosis in a single-arm multicenter, non-randomized cooperative group trial. An effective reinduction multiagent chemotherapy regimen was administered in three blocks. Block 1 included vincristine, prednisone, doxorubicin and pegaspargase; Block 2 included cyclophosphamide, etoposide and methotrexate; Block 3 included high dose cytosine arabinoside and asparaginase. Bortezomib was administered at a dose of 1.3 mg/m 2 as a bolus intravenous injection on Days 1, 4, 8, and 11 of Block 1 and Days 1, 4, and 8 of Block 2. There were 140 patients with ALL or LL enrolled and evaluated for safety. The median age was ten years (range 1 to 26), 57% were male, 70% were white, 14% were black, 4% were Asian, 2% were American Indian/ Alaska Native, 1% were Pacific Islander. The activity was evaluated in a pre-specified subset of the first 60 evaluable patients enrolled on the study with pre-B ALL ≤21 years and relapsed <36 months from diagnosis. The complete remission (CR) rate at day 36 was compared to that in a historical control set of patients who had received the identical backbone therapy without bortezomib. There was no evidence that the addition of bortezomib had any impact on the CR rate. No new safety concerns were observed when bortezomib was added to a chemotherapy backbone regimen as compared with a historical control group in which the backbone regimen was given without bortezomib. The BSA-normalized clearance of bortezomib in pediatric patients was similar to that observed in adults.

Pregnancy

8.1 Pregnancy Risk Summary Based on its mechanism of action [see Clinical Pharmacology (12.1)] and findings in animals, Bortezomib Injection can cause fetal harm when administered to a pregnant woman. There are no studies with the use of bortezomib in pregnant women to inform drug-associated risks. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (see Data) . Advise pregnant women of the potential risk to the fetus. Adverse outcomes in pregnancy occur regardless of the health of the mother or the use of medications. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Animal Data Bortezomib was not teratogenic in nonclinical developmental toxicity studies in rats and rabbits at the highest dose tested (0.075 mg/kg; 0.5 mg/m 2 in the rat and 0.05 mg/kg; 0.6 mg/m 2 in the rabbit) when administered during organogenesis. These dosages are approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area). Pregnant rabbits given bortezomib during organogenesis at a dose of 0.05 mg/kg (0.6 mg/m 2 ) experienced significant postimplantation loss and decreased number of live fetuses. Live fetuses from these litters also showed significant decreases in fetal weight.

Use In Specific Populations

8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy Risk Summary Based on its mechanism of action [see Clinical Pharmacology (12.1)] and findings in animals, Bortezomib Injection can cause fetal harm when administered to a pregnant woman. There are no studies with the use of bortezomib in pregnant women to inform drug-associated risks. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (see Data) . Advise pregnant women of the potential risk to the fetus. Adverse outcomes in pregnancy occur regardless of the health of the mother or the use of medications. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. Data Animal Data Bortezomib was not teratogenic in nonclinical developmental toxicity studies in rats and rabbits at the highest dose tested (0.075 mg/kg; 0.5 mg/m 2 in the rat and 0.05 mg/kg; 0.6 mg/m 2 in the rabbit) when administered during organogenesis. These dosages are approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area. Bortezomib caused embryo-fetal lethality in rabbits at doses lower than the clinical dose (approximately 0.5 times the clinical dose of 1.3 mg/m 2 based on body surface area). Pregnant rabbits given bortezomib during organogenesis at a dose of 0.05 mg/kg (0.6 mg/m 2 ) experienced significant postimplantation loss and decreased number of live fetuses. Live fetuses from these litters also showed significant decreases in fetal weight. 8.2 Lactation Risk Summary There are no data on the presence of bortezomib or its metabolites in human milk, the effects of the drug on the breastfed child, or the effects of the drug on milk production. Because many drugs are excreted in human milk and because the potential for serious adverse reactions in a breastfed child from Bortezomib Injection is unknown, advise nursing women not to breastfeed during treatment with Bortezomib Injection and for two months after treatment. 8.3 Females and Males of Reproductive Potential Based on its mechanism of action and findings in animals, Bortezomib Injection can cause fetal harm when administered to a pregnant woman [see Use in Specific Populations (8.1)]. Pregnancy Testing Conduct pregnancy testing in females of reproductive potential prior to initiating Bortezomib Injection treatment. Contraception Females Advise females of reproductive potential to use effective contraception during treatment with Bortezomib Injection and for seven months after the last dose. Males Males with female partners of reproductive potential should use effective contraception during treatment with Bortezomib Injection and for four months after the last dose. Infertility Based on the mechanism of action and findings in animals, Bortezomib Injection may have an effect on either male or female fertility [see Nonclinical Toxicology (13.1)] . 8.4 Pediatric Use Safety and effectiveness have not been established in pediatric patients. The activity and safety of bortezomib in combination with intensive reinduction chemotherapy was evaluated in pediatric and young adult patients with lymphoid malignancies (pre-B cell ALL 77%, 16% with T-cell ALL, and 7% T-cell lymphoblastic lymphoma (LL)), all of whom relapsed within 36 months of initial diagnosis in a single-arm multicenter, non-randomized cooperative group trial. An effective reinduction multiagent chemotherapy regimen was administered in three blocks. Block 1 included vincristine, prednisone, doxorubicin and pegaspargase; Block 2 included cyclophosphamide, etoposide and methotrexate; Block 3 included high dose cytosine arabinoside and asparaginase. Bortezomib was administered at a dose of 1.3 mg/m 2 as a bolus intravenous injection on Days 1, 4, 8, and 11 of Block 1 and Days 1, 4, and 8 of Block 2. There were 140 patients with ALL or LL enrolled and evaluated for safety. The median age was ten years (range 1 to 26), 57% were male, 70% were white, 14% were black, 4% were Asian, 2% were American Indian/ Alaska Native, 1% were Pacific Islander. The activity was evaluated in a pre-specified subset of the first 60 evaluable patients enrolled on the study with pre-B ALL ≤21 years and relapsed <36 months from diagnosis. The complete remission (CR) rate at day 36 was compared to that in a historical control set of patients who had received the identical backbone therapy without bortezomib. There was no evidence that the addition of bortezomib had any impact on the CR rate. No new safety concerns were observed when bortezomib was added to a chemotherapy backbone regimen as compared with a historical control group in which the backbone regimen was given without bortezomib. The BSA-normalized clearance of bortezomib in pediatric patients was similar to that observed in adults. 8.5 Geriatric Use Of the 669 patients enrolled in the relapsed multiple myeloma study, 245 (37%) were 65 years of age or older: 125 (38%) on the bortezomib arm and 120 (36%) on the dexamethasone arm. Median time to progression and median duration of response for patients ≥65 were longer on bortezomib compared to dexamethasone [5.5 mo vs 4.3 mo, and 8.0 mo vs 4.9 mo, respectively]. On the bortezomib arm, 40% (n=46) of evaluable patients aged ≥65 experienced response (CR+PR) vs 18% (n=21) on the dexamethasone arm. The incidence of Grade 3 and 4 events was 64%, 78% and 75% for bortezomib patients ≤50, 51 to 64 and ≥65 years old, respectively [see Adverse Reactions (6.1); Clinical Studies (14.1)] . No overall differences in safety or effectiveness were observed between patients ≥age 65 and younger patients receiving bortezomib; but greater sensitivity of some older individuals cannot be ruled out. 8.6 Renal Impairment No starting dosage adjustment of Bortezomib Injection is recommended for patients with renal impairment. In patients requiring dialysis, Bortezomib Injection should be administered after the dialysis procedure [see Clinical Pharmacology (12.3)] . 8.7 Hepatic Impairment No starting dosage adjustment of Bortezomib Injection is recommended for patients with mild hepatic impairment (total bilirubin ≤1× ULN and AST > ULN, or total bilirubin >1 to 1.5× ULN and any AST). The exposure of bortezomib is increased in patients with moderate (total bilirubin ≥1.5 to 3× ULN and any AST) and severe (total bilirubin >3× ULN and any AST) hepatic impairment. Reduce the starting dose in patients with moderate or severe hepatic impairment [see Dosage and Administration (2.8), Clinical Pharmacology (12.3)] . 8.8 Patients with Diabetes During clinical trials, hypoglycemia and hyperglycemia were reported in diabetic patients receiving oral hypoglycemics. Patients on oral antidiabetic agents receiving Bortezomib Injection treatment may require close monitoring of their blood glucose levels and adjustment of the dose of their anti-diabetic medication.

How Supplied

16 HOW SUPPLIED/STORAGE AND HANDLING Bortezomib Injection is a clear, colorless to slightly yellow ready-to-use, sterile solution supplied as individually cartoned 5 mL vials containing 3.5 mg/3.5 mL (1 mg/mL) or 2 mL vials containing 3.5 mg/1.4 mL (2.5 mg/mL) of Bortezomib Injection. 3.5 mg/3.5 mL (1mg/mL) in a single-dose 5 mL vial NDC 72266-243-01 3.5 mg/1.4 mL (2.5 mg/mL) in a single-dose 2 mL vial NDC 72266-244-01 Store Bortezomib Injection in a refrigerator at 2º to 8°C (36° to 46°F) in the original package to protect from light. Follow guidelines for handling and disposal for hazardous drugs, including the use of gloves and other protective clothing to prevent skin contact 1 .

Learning Zones

The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.

Disclaimer

The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).

Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.

Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.