This site is intended for healthcare professionals
Abstract digital waveforms in blue and purple
FDA Drug information

CELECOXIB

Read time: 2 mins
Marketing start date: 23 Dec 2024

Summary of product characteristics


Adverse Reactions

6 ADVERSE REACTIONS Most common adverse reactions in arthritis trials (>2% and >placebo): abdominal pain, diarrhea, dyspepsia, flatulence, peripheral edema, accidental injury, dizziness, pharyngitis, rhinitis, sinusitis, upper respiratory tract infection, rash ( 6.1 ). To report SUSPECTED ADVERSE REACTIONS, contact Cipla Ltd, at 1-866-604-3268 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch Of the Celecoxib Capsules-treated patients in the pre-marketing controlled clinical trials, approximately 4,250 were patients with OA, approximately 2,100 were patients with RA, and approximately 1,050 were patients with post-surgical pain. More than 8,500 patients received a total daily dose of Celecoxib Capsules of 200 mg (100 mg twice daily or 200 mg once daily) or more, including more than 400 treated at 800 mg (400 mg twice daily). Approximately 3,900 patients received Celecoxib Capsules at these doses for 6 months or more; approximately 2,300 of these have received it for 1 year or more and 124 of these have received it for 2 years or more. Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. The adverse reaction information from clinical trials does, however, provide a basis for identifying the adverse events that appear to be related to drug use and for approximating rates. 6.1 Pre-marketing Controlled Arthritis Trials Table 1 lists all adverse events, regardless of causality, occurring in ≥2% of patients receiving Celecoxib Capsules from 12 controlled studies conducted in patients with OA or RA that included a placebo and/or a positive control group. Since these 12 trials were of different durations, and patients in the trials may not have been exposed for the same duration of time, these percentages do not capture cumulative rates of occurrence. Table 1: Adverse Events Occurring in ≥2% of Celecoxib Patients from Pre-marketing Controlled Arthritis Trials Celecoxib = Celecoxib Capsules 100 - 200 mg twice daily or 200 mg once daily; NAP = Naproxen 500 mg twice daily; DCF = Diclofenac 75 mg twice daily; IBU = Ibuprofen 800 mg three times daily. Celecoxib (N=4146) Placebo (N=1864) NAP (N=1366) DCF (N=387) IBU (N=345) Gastrointestinal Abdominal Pain 4.1% 2.8% 7.7% 9.0% 9.0% Diarrhea 5.6% 3.8% 5.3% 9.3% 5.8% Dyspepsia 8.8% 6.2% 12.2% 10.9% 12.8% Flatulence 2.2% 1.0% 3.6% 4.1% 3.5% Nausea 3.5% 4.2% 6.0% 3.4% 6.7% Body as whole Back Pain 2.8% 3.6% 2.2% 2.6% 0.9% Peripheral Edema 2.1% 1.1% 2.1% 1.0% 3.5% Injury-Accidental 2.9% 2.3% 3.0% 2.6% 3.2% Central, Peripheral Nervous System Dizziness 2.0% 1.7% 2.6% 1.3% 2.3% Headache 15.8% 20.2% 14.5% 15.5% 15.4% Psychatric Insomnia 2.3% 2.3% 2.9% 1.3% 1.4% Respiratory Pharyngitis 2.3% 1.1% 1.7% 1.6% 2.6% Rhinitis 2.0% 1.3% 2.4% 2.3% 0.6% Sinusitis 5.0% 4.3% 4.0% 5.4% 5.8% Upper Respiratory Infection 8.1% 6.7% 9.9% 9.8% 9.9% Skin Rash 2.2% 2.1% 2.1% 1.3% 1.2% The following adverse reactions occurred in 0.1 - 1.9% of patients treated with Celecoxib Capsules (100 - 200 mg twice daily or 200 mg once daily): Gastrointestinal: Constipation, diverticulitis, dysphagia, eructation, esophagitis, gastritis, gastroenteritis, gastroesophageal reflux, hemorrhoids, hiatal hernia, melena, dry mouth, stomatitis, tenesmus, vomiting Cardiovascular: Aggravated hypertension, angina pectoris, coronary artery disorder, myocardial infarction Allergy General: aggravated, allergic reaction, chest pain, cyst NOS, edema generalized, face edema, fatigue, fever, hot flushes, influenza-like symptoms, pain, peripheral pain Central, peripheral nervous system: Leg cramps, hypertonia, hypoesthesia, migraine, paresthesia, vertigo Hearing and vestibular: Deafness, tinnitus Heart rate and rhythm: Palpitation, tachycardia Liver and biliary: Hepatic function abnormal, SGOT increased, SGPT increased Metabolic and nutritional: BUN increased, CPK increased, hypercholesterolemia, hyperglycemia, hypokalemia, NPN increased, creatinine increased, alkaline phosphatase increased, weight increased Musculoskeletal: Arthralgia, arthrosis, myalgia, synovitis, tendinitis Platelets (bleeding or clotting): Ecchymosis, epistaxis, thrombocythemia Psychiatric: Anorexia, anxiety, appetite increased, depression, nervousness, somnolence Hemic: Anemia Respiratory: Bronchitis, bronchospasm, bronchospasm aggravated, coughing, dyspnea, laryngitis, pneumonia Skin and appendages: Alopecia, dermatitis, photosensitivity reaction, pruritus, rash erythematous, rash maculopapular, skin disorder, skin dry, sweating increased, urticaria Application site disorders: Cellulitis, dermatitis contact Urinary: Albuminuria, cystitis, dysuria, hematuria, micturition frequency, renal calculus The following serious adverse events (causality not evaluated) occurred in <0.1% of patients (cases reported only in postmarketing experience are indicated in italics): Cardiovascular: Syncope, congestive heart failure, ventricular fibrillation, pulmonary embolism, cerebrovascular accident, peripheral gangrene, thrombophlebitis, vasculitis, deep venous thrombosis Gastrointestinal: Intestinal obstruction, intestinal perforation, gastrointestinal bleeding, colitis with bleeding, esophageal perforation, pancreatitis, ileus Liver and biliary: Cholelithiasis, hepatitis, jaundice, liver failure Hemic and lymphatic: Thrombocytopenia, agranulocytosis, aplastic anemia, pancytopenia, leucopenia Metabolic: Hypoglycemia, hyponatremia Nervous: Ataxia, suicide, aseptic meningitis, ageusia, anosmia, fatal intracranial hemorrhage [see Drug Interactions (7.1)] Renal: Acute renal failure, interstitial nephritis Skin: Erythema multiforme, exfoliative dermatitis, Stevens-Johnson syndrome, toxic epidermal necrolysis General: Sepsis, sudden death, anaphylactoid reaction, angioedema 6.2 The Celecoxib Long-Term Arthritis Safety Study [see Special Studies ( 14.6 )] Hematological Events: The incidence of clinically significant decreases in hemoglobin (>2 g/dL) was lower in patients on Celecoxib 400 mg twice daily (0.5%) compared to patients on either diclofenac 75 mg twice daily (1.3%) or ibuprofen 800 mg three times daily 1.9%. The lower incidence of events with Celecoxib was maintained with or without ASA use [see Clinical Pharmacology ( 12.2 )]. Withdrawals/Serious Adverse Events: Kaplan-Meier cumulative rates at 9 months for withdrawals due to adverse events for Celecoxib, diclofenac and ibuprofen were 24%, 29%, and 26%, respectively. Rates for serious adverse events (i.e., causing hospitalization or felt to be life-threatening or otherwise medically significant), regardless of causality, were not different across treatment groups (8%, 7%, and 8%, respectively). 6.3 Juvenile Rheumatoid Arthritis Study In a 12-week, double-blind, active-controlled study, 242 JRA patients 2 years to 17 years of age were treated with Celecoxib or naproxen; 77 JRA patients were treated with Celecoxib 3 mg/kg BID, 82 patients were treated with Celecoxib 6 mg/kg BID, and 83 patients were treated with naproxen 7.5 mg/kg BID. The most commonly occurring (≥5%) adverse events in Celecoxib treated patients were headache, fever (pyrexia), upper abdominal pain, cough, nasopharyngitis, abdominal pain, nausea, arthralgia, diarrhea and vomiting. The most commonly occurring (≥5%) adverse experiences for naproxen-treated patients were headache, nausea, vomiting, fever, upper abdominal pain, diarrhea, cough, abdominal pain, and dizziness (Table 2). Compared with naproxen, Celecoxib at doses of 3 and 6 mg/kg BID had no observable deleterious effect on growth and development during the course of the 12-week double-blind study. There was no substantial difference in the number of clinical exacerbations of uveitis or systemic features of JRA among treatment groups. In a 12-week, open-label extension of the double-blind study described above, 202 JRA patients were treated with Celecoxib 6 mg/kg BID. The incidence of adverse events was similar to that observed during the double-blind study; no unexpected adverse events of clinical importance emerged. Table 2: Adverse Events Occurring in ≥5% of JRA Patients in Any Treatment Group, by System Organ Class (% of patients with events) * Abnormal laboratory tests, which include: Prolonged activated partial thromboplastin time, Bacteriuria NOS present, Blood creatine phosphokinase increased, Blood culture positive, Blood glucose increased, Blood pressure increased, Blood uric acid increased, Hematocrit decreased, Hematuria present, Hemoglobin decreased, Liver function tests NOS abnormal, Proteinuria present, Transaminase NOS increased, Urine analysis abnormal NOS All Doses Twice Daily System Organ Class Preferred Term Celecoxib 3 mg/kg N=77 Celecoxib 6 mg/kg N=82 Naproxen 7.5 mg/kg N=83 Any Event 64 70 72 Eye Disorders 5 5 5 Gastrointestinal 26 24 36 Abdominal pain NOS 4 7 7 Abdominal pain upper 8 6 10 Vomiting NOS 3 6 11 Diarrhea NOS 5 4 8 Nausea 7 4 11 General 13 11 18 Pyrexia 8 9 11 Infections 25 20 27 Nasopharyngitis 5 6 5 Injury and Poisoning 4 6 5 Investigations* 3 11 7 Musculoskeletal 8 10 17 Arthralgia 3 7 4 Nervous System 17 11 21 Headache NOS 13 10 16 Dizziness (excl vertigo) 1 1 7 Respiratory 8 15 15 Cough 7 7 8 Skin & Subcutaneous 10 7 18 6.4 Other Pre-Approval Studies Adverse Events from Ankylosing Spondylitis Studies: A total of 378 patients were treated with Celecoxib Capsules in placebo- and active controlled AS studies. Doses up to 400 mg once daily were studied. The types of adverse events reported in the AS studies were similar to those reported in the OA/RA studies. Adverse Events from Analgesia and Dysmenorrhea Studies: Approximately 1,700 patients were treated with Celecoxib Capsules in analgesia and dysmenorrhea studies. All patients in post-oral surgery pain studies received a single dose of study medication. Doses up to 600 mg/day of Celecoxib Capsules were studied in primary dysmenorrhea and post-orthopedic surgery pain studies. The types of adverse events in the analgesia and dysmenorrhea studies were similar to those reported in arthritis studies. The only additional adverse event reported was post-dental extraction alveolar osteitis (dry socket) in the post-oral surgery pain studies. 6.5 The APC and PreSAP Trials Adverse reactions from long-term, placebo-controlled polyp prevention studies: Exposure to Celecoxib Capsules in the APC and PreSAP trials was 400 to 800 mg daily for up to 3 years [see Special Studies Adenomatous Polyp Prevention Studies ( 14.6 )]. Some adverse reactions occurred in higher percentages of patients than in the arthritis pre-marketing trials (treatment durations up to 12 weeks; see Adverse events from celecoxib pre-marketing controlled arthritis trials, above). The adverse reactions for which these differences in patients treated with celecoxib were greater as compared to the arthritis pre-marketing trials were as follows: Celecoxib Capsules (400 to 800 mg daily) N = 2285 Placebo N=1303 Diarrhea 10.5% 7.0% Gastroesophageal reflux disease 4.7% 3.1% Nausea 6.8% 5.3% Vomiting 3.2% 2.1% Dyspnea 2.8% 1.6% Hypertension 12.5% 9.8% The following additional adverse reactions occurred in ≥0.1% and <1% of patients taking Celecoxib Capsules, at an incidence greater than placebo in the long-term polyp prevention studies and were either not reported during the controlled arthritis pre-marketing trials or occurred with greater frequency in the long-term, placebo-controlled polyp prevention studies: Nervous system disorders: Cerebral infarction Eye disorders: Vitreous floaters, conjunctival hemorrhage Ear and labyrinth: Labyrinthitis Cardiac disorders: Angina unstable, aortic valve incompetence, coronary artery atherosclerosis, sinus bradycardia, ventricular hypertrophy Vascular disorders: Deep vein thrombosis Reproductive system and breast disorders: Ovarian cyst Investigations: Blood potassium increased, blood sodium increased, blood testosterone decreased Injury, poisoning and procedural complications: Epicondylitis, tendon rupture

Contraindications

4 CONTRAINDICATIONS • Known hypersensitivity to celecoxib or sulfonamides ( 4 ) • History of asthma, urticaria, or other allergic-type reactions after taking aspirin or other NSAIDs ( 4 , 5.7 , 5.8 , 5.13 ) • Use during the perioperative period in the setting of coronary artery bypass graft (CABG) surgery ( 4 , 5.1 ) Celecoxib Capsules is contraindicated: • In patients with known hypersensitivity to celecoxib, aspirin, or other NSAIDs. • In patients who have demonstrated allergic-type reactions to sulfonamides. • In patients who have experienced asthma, urticaria, or allergic-type reactions after taking aspirin or other NSAIDs. Severe anaphylactoid reactions to NSAIDs, some of them fatal, have been reported in such patients [see Warnings and Precautions ( 5.7 , 5.13 )]. • For the treatment of peri-operative pain in the setting of coronary artery bypass graft (CABG) surgery [see Warnings and Precautions ( 5.1 )].

Description

11 DESCRIPTION Celecoxib is chemically designated as 4-[5-(4-methylphenyl) - 3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide and is a diaryl-substituted pyrazole. The empirical formula is C 17 H 14 F 3 N 3 O 2 S, and the molecular weight is 381.38; the chemical structure is as follows: Celecoxib oral capsules contain either 50 mg, 100 mg, 200 mg or 400 mg of celecoxib, together with inactive ingredients including: croscarmellose sodium, edible inks, gelatin, lactose monohydrate, magnesium stearate, povidone and sodium lauryl sulfate. image

Dosage And Administration

2 DOSAGE AND ADMINISTRATION Use lowest effective dose for the shortest duration consistent with treatment goals for the individual patient. ( 1 , 5.1 , 5.4 ) • OA: 200 mg once daily or 100 mg twice daily ( 2.1 , 14.1 ) • RA: 100 to 200 mg twice daily ( 2.2 , 14.2 ) • JRA: 50 mg twice daily in patients 10-25 kg. 100 mg twice daily in patients more than 25 kg ( 2.3 , 14.3 ) • AS: 200 mg once daily single dose or 100 mg twice daily. If no effect is observed after 6 weeks, a trial of 400 mg (single or divided doses) may be of benefit ( 2.4 , 14.4 ) • AP and PD: 400 mg initially, followed by 200 mg dose if needed on first day. On subsequent days, 200 mg twice daily as needed ( 2.5 , 14.5 ) Reduce daily dose by 50% in patients with moderate hepatic impairment (Child-Pugh Class B). Consider a dose reduction by 50% (or alternative management for JRA) in patients who are known or suspected to be CYP2C9 poor metabolizers, ( 2.6 , 8.4 , 8.8 , 12.3 ). Use lowest effective dose for the shortest duration consistent with treatment goals for the individual patient. These doses can be given without regard to timing of meals. 2.1 Osteoarthritis For relief of the signs and symptoms of OA the recommended oral dose is 200 mg per day administered as a single dose or as 100 mg twice daily. 2.2 Rheumatoid Arthritis For relief of the signs and symptoms of RA the recommended oral dose is 100 to 200 mg twice daily. 2.3 Juvenile Rheumatoid Arthritis For the relief of the signs and symptoms of JRA the recommended oral dose for pediatric patients (age 2 years and older) is based on weight. For patients ≥10 kg to £25 kg the recommended dose is 50 mg twice daily. For patients >25 kg the recommended dose is 100 mg twice daily. For patients who have difficulty swallowing capsules, the contents of a Celecoxib Capsule can be added to applesauce. The entire capsule contents are carefully emptied onto a level teaspoon of cool or room temperature applesauce and ingested immediately with water. The sprinkled capsule contents on applesauce are stable for up to 6 hours under refrigerated conditions (2-8° C/ 35-45° F). 2.4 Ankylosing Spondylitis For the management of the signs and symptoms of AS, the recommended dose of Celecoxib Capsules is 200 mg daily in single (once per day) or divided (twice per day) doses. If no effect is observed after 6 weeks, a trial of 400 mg daily may be worthwhile. If no effect is observed after 6 weeks on 400 mg daily, a response is not likely and consideration should be given to alternate treatment options. 2.5 Management of Acute Pain and Treatment of Primary Dysmenorrhea The recommended dose of Celecoxib Capsules is 400 mg initially, followed by an additional 200 mg dose if needed on the first day. On subsequent days, the recommended dose is 200 mg twice daily as needed. 2.6 Special Populations Hepatic insufficiency: The daily recommended dose of Celecoxib Capsules in patients with moderate hepatic impairment (Child-Pugh Class B) should be reduced by 50%. The use of Celecoxib Capsules in patients with severe hepatic impairment is not recommended [see Warnings and Precautions ( 5.5 ), Use in Specific Populations ( 8.6 ) and Clinical Pharmacology ( 12.3 )]. Poor Metabolizers of CYP2C9 Substrates: Patients who are known or suspected to be poor CYP2C9 metabolizers based on genotype or previous history/experience with other CYP2C9 substrates (such as warfarin, phenytoin) should be administered celecoxib with caution. Consider starting treatment at half the lowest recommended dose in poor metabolizers (i.e. CYP2C9*3/*3). Consider using alternative management in JRA patients who are poor metabolizers. [see Use in Specific populations ( 8.8 ), and Clinical Pharmacology ( 12.5 )].

Indications And Usage

1 INDICATIONS AND USAGE Celecoxib Capsule is a non-steroidal anti-inflammatory drug indicated for: • Osteoarthritis (OA) ( 1.1 ) • Rheumatoid Arthritis (RA) ( 1.2 ) • Juvenile Rheumatoid Arthritis (JRA) in patients 2 years and older ( 1.3 ) • Ankylosing Spondylitis (AS) ( 1.4 ) • Acute Pain (AP) ( 1.5 ) • Primary Dysmenorrhea (PD) ( 1.6 ) Carefully consider the potential benefits and risks of Celecoxib Capsules and other treatment options before deciding to use Celecoxib Capsules. Use the lowest effective dose for the shortest duration consistent with individual patient treatment goals [see Warnings and Precautions ( 5 )] 1.1 Osteoarthritis (OA) Celecoxib Capsules is indicated for relief of the signs and symptoms of OA [see Clinical Studies ( 14.1 )] 1.2 Rheumatoid Arthritis (RA) Celecoxib Capsules is indicated for relief of the signs and symptoms of RA [see Clinical Studies ( 14.2 )] 1.3 Juvenile Rheumatoid Arthritis (JRA) Celecoxib Capsules is indicated for relief of the signs and symptoms of JRA in patients 2 years and older [see Clinical Studies ( 14.3 )] 1.4 Ankylosing Spondylitis (AS) Celecoxib Capsules is indicated for the relief of signs and symptoms of AS [see Clinical Studies ( 14.4 )] 1.5 Acute Pain (AP) Celecoxib Capsules is indicated for the management of AP in adults [see Clinical Studies ( 14.5 )] 1.6 Primary Dysmenorrhea (PD) Celecoxib Capsules is indicated for the treatment of PD [see Clinical Studies ( 14.5 )]

Overdosage

10 OVERDOSAGE No overdoses of Celecoxib Capsules were reported during clinical trials. Doses up to 2400 mg/day for up to 10 days in 12 patients did not result in serious toxicity. Symptoms following acute NSAID overdoses are usually limited to lethargy, drowsiness, nausea, vomiting, and epigastric pain, which are generally reversible with supportive care. Gastrointestinal bleeding can occur. Hypertension, acute renal failure, respiratory depression and coma may occur, but are rare. Anaphylactoid reactions have been reported with therapeutic ingestion of NSAIDs, and may occur following an overdose. Patients should be managed by symptomatic and supportive care following an NSAID overdose. There are no specific antidotes. No information is available regarding the removal of celecoxib by hemodialysis, but based on its high degree of plasma protein binding (>97%) dialysis is unlikely to be useful in overdose. Emesis and/or activated charcoal (60 to 100 g in adults, 1 to 2 g/kg in children) and/or osmotic cathartic may be indicated in patients seen within 4 hours of ingestion with symptoms or following a large overdose. Forced diuresis, alkalinization of urine, hemodialysis, or hemoperfusion may not be useful due to high protein binding.

Adverse Reactions Table

Table 1: Adverse Events Occurring in ≥2% of Celecoxib Patients from Pre-marketing Controlled Arthritis Trials
Celecoxib = Celecoxib Capsules 100 - 200 mg twice daily or 200 mg once daily;
NAP = Naproxen 500 mg twice daily;
DCF = Diclofenac 75 mg twice daily;
IBU = Ibuprofen 800 mg three times daily.

Celecoxib (N=4146)

Placebo (N=1864)

NAP (N=1366)

DCF (N=387)

IBU (N=345)

Gastrointestinal

Abdominal Pain

4.1%

2.8%

7.7%

9.0%

9.0%

Diarrhea

5.6%

3.8%

5.3%

9.3%

5.8%

Dyspepsia

8.8%

6.2%

12.2%

10.9%

12.8%

Flatulence

2.2%

1.0%

3.6%

4.1%

3.5%

Nausea

3.5%

4.2%

6.0%

3.4%

6.7%

Body as whole

Back Pain

2.8%

3.6%

2.2%

2.6%

0.9%

Peripheral Edema

2.1%

1.1%

2.1%

1.0%

3.5%

Injury-Accidental

2.9%

2.3%

3.0%

2.6%

3.2%

Central, Peripheral Nervous System

Dizziness

2.0%

1.7%

2.6%

1.3%

2.3%

Headache

15.8%

20.2%

14.5%

15.5%

15.4%

Psychatric

Insomnia

2.3%

2.3%

2.9%

1.3%

1.4%

Respiratory

Pharyngitis

2.3%

1.1%

1.7%

1.6%

2.6%

Rhinitis

2.0%

1.3%

2.4%

2.3%

0.6%

Sinusitis

5.0%

4.3%

4.0%

5.4%

5.8%

Upper Respiratory Infection

8.1%

6.7%

9.9%

9.8%

9.9%

Skin

Rash

2.2%

2.1%

2.1%

1.3%

1.2%

Drug Interactions

7 DRUG INTERACTIONS • Concomitant use of Celecoxib and warfarin may result in increased risk of bleeding complications. ( 7.1 ) • Concomitant use of Celecoxib increases lithium plasma levels. ( 7.2 ) • Concomitant use of Celecoxib may reduce the antihypertensive effect of ACE Inhibitors and angiotensin II antagonists. ( 7.4 ) • Use caution with drugs known to inhibit P450 2C9 or metabolized by 2D6 due to the potential for increased plasma levels ( 2.6 , 8.4 , 8.8 , 12.3 ) General: Celecoxib metabolism is predominantly mediated via cytochrome P450 (CYP) 2C9 in the liver. Co-administration of celecoxib with drugs that are known to inhibit CYP2C9 should be done with caution. Significant interactions may occur when Celecoxib is administered together with drugs that inhibit CYP2C9. In vitro studies indicate that celecoxib, although not a substrate is an inhibitor of CYP2D6. Therefore, there is a potential for an in vivo drug interaction with drugs that are metabolized by CYP2D6. 7.1 Warfarin Anticoagulant activity should be monitored, particularly in the first few days, after initiating or changing Celecoxib therapy in patients receiving warfarin or similar agents, since these patients are at an increased risk of bleeding complications. The effect of Celecoxib on the anticoagulant effect of warfarin was studied in a group of healthy subjects receiving daily 2-5 mg doses of warfarin. In these subjects, Celecoxib did not alter the anticoagulant effect of warfarin as determined by prothrombin time. However, in postmarketing experience, serious bleeding events, some of which were fatal, have been reported, predominantly in the elderly, in association with increases in prothrombin time in patients receiving Celecoxib concurrently with warfarin. 7.2 Lithium In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 mg twice daily with Celecoxib Capsules 200 mg twice daily as compared to subjects receiving lithium alone. Patients on lithium treatment should be closely monitored when Celecoxib Capsules is introduced or withdrawn. 7.3 Aspirin Celecoxib can be used with low-dose aspirin. However, concomitant administration of aspirin with celecoxib increases the rate of GI ulceration or other complications, compared to use of celecoxib alone [see Warnings and Precautions ( 5.1 , 5.4 ) and Clinical Studies ( 14.6 )]. Because of its lack of platelet effects, celecoxib is not a substitute for aspirin for cardiovascular prophylaxis [see Clinical Pharmacology ( 12.2 )]. 7.4 ACE-inhibitors and Angiotensin II Antagonists Reports suggest that NSAIDs may diminish the antihypertensive effect of Angiotensin Converting Enzyme (ACE) inhibitors and angiotensin II antagonists. This interaction should be given consideration in patients taking celecoxib concomitantly with ACE inhibitors and angiotensin II antagonists [see Clinical Pharmacology ( 12.2 ]. 7.5 Fluconazole Concomitant administration of fluconazole at 200 mg once daily resulted in a two-fold increase in celecoxib plasma concentration. This increase is due to the inhibition of celecoxib metabolism via P450 2C9 by fluconazole [see Clinical Pharmacology ( 12.3 )]. Celecoxib should be introduced at the lowest recommended dose in patients receiving fluconazole. 7.6 Furosemide Clinical studies, as well as post-marketing observations, have shown that NSAIDs can reduce the natriuretic effect of furosemide and thiazides in some patients. This response has been attributed to inhibition of renal prostaglandin synthesis. 7.7 Methotrexate In an interaction study of rheumatoid arthritis patients taking methotrexate, celecoxib did not have an effect on the pharmacokinetics of methotrexate [see Clinical Pharmacology ( 12.3 )]. 7.8 Concomitant NSAID Use The concomitant use of celecoxib with any dose of a non-aspirin NSAID should be avoided due to the potential for increased risk of adverse reactions.

Clinical Pharmacology

12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Celecoxib is a nonsteroidal anti-inflammatory drug that exhibits anti-inflammatory, analgesic, and antipyretic activities in animal models. The mechanism of action of Celecoxib is believed to be due to inhibition of prostaglandin synthesis, primarily via inhibition of cyclooxygenase-2 (COX-2), and at therapeutic concentrations in humans, Celecoxib does not inhibit the cyclooxygenase-1 (COX-1) isoenzyme. In animal colon tumor models, Celecoxib reduced the incidence and multiplicity of tumors. 12.2 Pharmacodynamics Platelets: In clinical trials using normal volunteers, Celecoxib Capsules at single doses up to 800 mg and multiple doses of 600 mg twice daily for up to 7 days duration (higher than recommended therapeutic doses) had no effect on reduction of platelet aggregation or increase in bleeding time. Because of its lack of platelet effects, Celecoxib Capsules is not a substitute for aspirin for cardiovascular prophylaxis. It is not known if there are any effects of Celecoxib Capsules on platelets that may contribute to the increased risk of serious cardiovascular thrombotic adverse events associated with the use of Celecoxib Capsules. Fluid Retention: Inhibition of PGE2 synthesis may lead to sodium and water retention through increased reabsorption in the renal medullary thick ascending loop of Henle and perhaps other segments of the distal nephron. In the collecting ducts, PGE2 appears to inhibit water reabsorption by counteracting the action of antidiuretic hormone. 12.3 Pharmacokinetics Absorption: Peak plasma levels of celecoxib occur approximately 3 hrs after an oral dose. Under fasting conditions, both peak plasma levels (C max ) and area under the curve (AUC) are roughly dose-proportional up to 200 mg BID; at higher doses there are less than proportional increases in C max and AUC [see Food Effects]. Absolute bioavailability studies have not been conducted. With multiple dosing, steady-state conditions are reached on or before Day 5. The pharmacokinetic parameters of celecoxib in a group of healthy subjects are shown in Table 3. Table 3: Summary of Single Dose (200 mg) Disposition Kinetics of Celecoxib in Healthy Subjects 1 1 Subjects under fasting conditions (n=36, 19-52 yrs.) Mean (%CV) PK Parameter Values Cmax, ng/mL Tmax, hr Effective t1/2, hr Vss/F, L CL/F, L/hr 705 (38) 2.8 (37) 11.2 (31) 429 (34) 27.7 (28) Food Effects: When Celecoxib Capsules were taken with a high fat meal, peak plasma levels were delayed for about 1 to 2 hours with an increase in total absorption (AUC) of 10% to 20%. Under fasting conditions, at doses above 200 mg, there is less than a proportional increase in C max and AUC, which is thought to be due to the low solubility of the drug in aqueous media. Coadministration of celecoxib with an aluminum- and magnesium-containing antacids resulted in a reduction in plasma celecoxib concentrations with a decrease of 37% in C max and 10% in AUC. Celecoxib Capsules, at doses up to 200 mg twice daily, can be administered without regard to timing of meals. Higher doses (400 mg twice daily) should be administered with food to improve absorption. In healthy adult volunteers, the overall systemic exposure (AUC) of celecoxib was equivalent when celecoxib was administered as intact capsule or capsule contents sprinkled on applesauce. There were no significant alterations in C max , T max or t 1/2 after administration of capsule contents on applesauce [see Dosage and Administration ( 2 )]. Distribution: In healthy subjects, celecoxib is highly protein bound (~97%) within the clinical dose range. In vitro studies indicate that celecoxib binds primarily to albumin and, to a lesser extent, a 1 -acid glycoprotein. The apparent volume of distribution at steady state (V ss /F) is approximately 400 L, suggesting extensive distribution into the tissues. Celecoxib is not preferentially bound to red blood cells. Metabolism: Celecoxib metabolism is primarily mediated via CYP2C9. Three metabolites, a primary alcohol, the corresponding carboxylic acid and its glucuronide conjugate, have been identified in human plasma. These metabolites are inactive as COX-1 or COX-2 inhibitors. Excretion: Celecoxib is eliminated predominantly by hepatic metabolism with little (<3%) unchanged drug recovered in the urine and feces. Following a single oral dose of radiolabeled drug, approximately 57% of the dose was excreted in the feces and 27% was excreted into the urine. The primary metabolite in both urine and feces was the carboxylic acid metabolite (73% of dose) with low amounts of the glucuronide also appearing in the urine. It appears that the low solubility of the drug prolongs the absorption process making terminal half-life (t 1/2 ) determinations more variable. The effective half-life is approximately 11 hours under fasted conditions. The apparent plasma clearance (CL/F) is about 500 mL/min. Geriatric: At steady state, elderly subjects (over 65 years old) had a 40% higher C max and a 50% higher AUC compared to the young subjects. In elderly females, celecoxib C max and AUC are higher than those for elderly males, but these increases are predominantly due to lower body weight in elderly females. Dose adjustment in the elderly is not generally necessary. However, for patients of less than 50 kg in body weight, initiate therapy at the lowest recommended dose [see Dosage and Administration ( 2.6 ) and Use in Specific Populations ( 8.5 )]. Pediatric: The steady state pharmacokinetics of celecoxib administered as an investigational oral suspension was evaluated in 152 JRA patients 2 years to 17 years of age weighing ≥10 kg with pauciarticular or polyarticular course JRA and in patients with systemic onset JRA. Population pharmacokinetic analysis indicated that the oral clearance (unadjusted for body weight) of celecoxib increases less than proportionally to increasing weight, with 10 kg and 25 kg patients predicted to have 40% and 24% lower clearance, respectively, compared with a 70 kg adult RA patient. Twice-daily administration of 50 mg capsules to JRA patients weighing ≥12 to £25 kg and 100 mg capsules to JRA patients weighing >25 kg should achieve plasma concentrations similar to those observed in a clinical trial that demonstrated the non-inferiority of celecoxib to naproxen 7.5 mg/kg twice daily (see Dosage and Administration (2.3). Celecoxib has not been studied in JRA patients under the age of 2 years, in patients with body weight less than 10 kg (22 lbs), or beyond 24 weeks. Race: Meta-analysis of pharmacokinetic studies has suggested an approximately 40% higher AUC of celecoxib in Blacks compared to Caucasians. The cause and clinical significance of this finding is unknown. Hepatic Insufficiency: A pharmacokinetic study in subjects with mild (Child-Pugh Class A) and moderate (Child-Pugh Class B) hepatic impairment has shown that steady-state celecoxib AUC is increased about 40% and 180%, respectively, above that seen in healthy control subjects. Therefore, the daily recommended dose of Celecoxib Capsules should be reduced by approximately 50% in patients with moderate (Child-Pugh Class B) hepatic impairment. Patients with severe hepatic impairment (Child-Pugh Class C) have not been studied. The use of celecoxib in patients with severe hepatic impairment is not recommended [see Dosage and Administration ( 2.6 ) and Use in Specific Populations ( 8.6 )]. Renal Insufficiency: In a cross-study comparison, celecoxib AUC was approximately 40% lower in patients with chronic renal insufficiency (GFR 35-60 mL/min) than that seen in subjects with normal renal function. No significant relationship was found between GFR and celecoxib clearance. Patients with severe renal insufficiency have not been studied. Similar to other NSAIDs, celecoxib is not recommended in patients with severe renal insufficiency [see Warnings and Precautions ( 5.6 )]. Drug interactions: In vitro studies indicate that Celecoxib is not an inhibitor of cytochrome P450 2C9, 2C19 or 3A4. In vivo studies have shown the following: Lithium: In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 mg twice daily with Celecoxib Capsules 200 mg twice daily as compared to subjects receiving lithium alone [see Drug Interactions ( 7.2 )]. Fluconazole: Concomitant administration of fluconazole at 200 mg once daily resulted in a two-fold increase in celecoxib plasma concentration. This increase is due to the inhibition of Celecoxib metabolism via P450 2C9 by fluconazole [see Drug Interactions ( 7.5 )]. Other Drugs: The effects of celecoxib on the pharmacokinetics and/or pharmacodynamics of glyburide, ketoconazole, methotrexate [see Drug Interactions ( 7.7 )], phenytoin, and tolbutamide have been studied in vivo and clinically important interactions have not been found. 12.4 Pharmacogenomics CYP2C9 activity is reduced in individuals with genetic polymorphisms that lead to reduced enzyme activity, such as those homozygous for the CYP2C9*2 and CYP2C9*3 polymorphisms. Limited data from 4 published reports that included a total of 8 subjects with the homozygous CYP2C9*3/*3 genotype showed celecoxib systemic levels that were 3- to 7-fold higher in these subjects compared to subjects with CYP2C9*1/*1 or *I/*3 genotypes. The pharmacokinetics of celecoxib have not been evaluated in subjects with other CYP2C9 polymorphisms, such as *2, *5, *6, *9 and *11. It is estimated that the frequency of the homozygous *3/ *3 genotype is 0.3% to 1.0% in various ethnic groups. [see Dosage and Administration ( 2.6 ), Use in Specific Populations ( 8.8 )].

Clinical Pharmacology Table

Table 3: Summary of Single Dose (200 mg) Disposition Kinetics of Celecoxib in Healthy Subjects1
1Subjects under fasting conditions (n=36, 19-52 yrs.)

Mean (%CV) PK Parameter Values

Cmax, ng/mL

Tmax, hr

Effective t1/2, hr

Vss/F, L

CL/F, L/hr

705 (38)

2.8 (37)

11.2 (31)

429 (34)

27.7 (28)

Mechanism Of Action

12.1 Mechanism of Action Celecoxib is a nonsteroidal anti-inflammatory drug that exhibits anti-inflammatory, analgesic, and antipyretic activities in animal models. The mechanism of action of Celecoxib is believed to be due to inhibition of prostaglandin synthesis, primarily via inhibition of cyclooxygenase-2 (COX-2), and at therapeutic concentrations in humans, Celecoxib does not inhibit the cyclooxygenase-1 (COX-1) isoenzyme. In animal colon tumor models, Celecoxib reduced the incidence and multiplicity of tumors.

Pharmacodynamics

12.2 Pharmacodynamics Platelets: In clinical trials using normal volunteers, Celecoxib Capsules at single doses up to 800 mg and multiple doses of 600 mg twice daily for up to 7 days duration (higher than recommended therapeutic doses) had no effect on reduction of platelet aggregation or increase in bleeding time. Because of its lack of platelet effects, Celecoxib Capsules is not a substitute for aspirin for cardiovascular prophylaxis. It is not known if there are any effects of Celecoxib Capsules on platelets that may contribute to the increased risk of serious cardiovascular thrombotic adverse events associated with the use of Celecoxib Capsules. Fluid Retention: Inhibition of PGE2 synthesis may lead to sodium and water retention through increased reabsorption in the renal medullary thick ascending loop of Henle and perhaps other segments of the distal nephron. In the collecting ducts, PGE2 appears to inhibit water reabsorption by counteracting the action of antidiuretic hormone.

Pharmacokinetics

12.3 Pharmacokinetics Absorption: Peak plasma levels of celecoxib occur approximately 3 hrs after an oral dose. Under fasting conditions, both peak plasma levels (C max ) and area under the curve (AUC) are roughly dose-proportional up to 200 mg BID; at higher doses there are less than proportional increases in C max and AUC [see Food Effects]. Absolute bioavailability studies have not been conducted. With multiple dosing, steady-state conditions are reached on or before Day 5. The pharmacokinetic parameters of celecoxib in a group of healthy subjects are shown in Table 3. Table 3: Summary of Single Dose (200 mg) Disposition Kinetics of Celecoxib in Healthy Subjects 1 1 Subjects under fasting conditions (n=36, 19-52 yrs.) Mean (%CV) PK Parameter Values Cmax, ng/mL Tmax, hr Effective t1/2, hr Vss/F, L CL/F, L/hr 705 (38) 2.8 (37) 11.2 (31) 429 (34) 27.7 (28) Food Effects: When Celecoxib Capsules were taken with a high fat meal, peak plasma levels were delayed for about 1 to 2 hours with an increase in total absorption (AUC) of 10% to 20%. Under fasting conditions, at doses above 200 mg, there is less than a proportional increase in C max and AUC, which is thought to be due to the low solubility of the drug in aqueous media. Coadministration of celecoxib with an aluminum- and magnesium-containing antacids resulted in a reduction in plasma celecoxib concentrations with a decrease of 37% in C max and 10% in AUC. Celecoxib Capsules, at doses up to 200 mg twice daily, can be administered without regard to timing of meals. Higher doses (400 mg twice daily) should be administered with food to improve absorption. In healthy adult volunteers, the overall systemic exposure (AUC) of celecoxib was equivalent when celecoxib was administered as intact capsule or capsule contents sprinkled on applesauce. There were no significant alterations in C max , T max or t 1/2 after administration of capsule contents on applesauce [see Dosage and Administration ( 2 )]. Distribution: In healthy subjects, celecoxib is highly protein bound (~97%) within the clinical dose range. In vitro studies indicate that celecoxib binds primarily to albumin and, to a lesser extent, a 1 -acid glycoprotein. The apparent volume of distribution at steady state (V ss /F) is approximately 400 L, suggesting extensive distribution into the tissues. Celecoxib is not preferentially bound to red blood cells. Metabolism: Celecoxib metabolism is primarily mediated via CYP2C9. Three metabolites, a primary alcohol, the corresponding carboxylic acid and its glucuronide conjugate, have been identified in human plasma. These metabolites are inactive as COX-1 or COX-2 inhibitors. Excretion: Celecoxib is eliminated predominantly by hepatic metabolism with little (<3%) unchanged drug recovered in the urine and feces. Following a single oral dose of radiolabeled drug, approximately 57% of the dose was excreted in the feces and 27% was excreted into the urine. The primary metabolite in both urine and feces was the carboxylic acid metabolite (73% of dose) with low amounts of the glucuronide also appearing in the urine. It appears that the low solubility of the drug prolongs the absorption process making terminal half-life (t 1/2 ) determinations more variable. The effective half-life is approximately 11 hours under fasted conditions. The apparent plasma clearance (CL/F) is about 500 mL/min. Geriatric: At steady state, elderly subjects (over 65 years old) had a 40% higher C max and a 50% higher AUC compared to the young subjects. In elderly females, celecoxib C max and AUC are higher than those for elderly males, but these increases are predominantly due to lower body weight in elderly females. Dose adjustment in the elderly is not generally necessary. However, for patients of less than 50 kg in body weight, initiate therapy at the lowest recommended dose [see Dosage and Administration ( 2.6 ) and Use in Specific Populations ( 8.5 )]. Pediatric: The steady state pharmacokinetics of celecoxib administered as an investigational oral suspension was evaluated in 152 JRA patients 2 years to 17 years of age weighing ≥10 kg with pauciarticular or polyarticular course JRA and in patients with systemic onset JRA. Population pharmacokinetic analysis indicated that the oral clearance (unadjusted for body weight) of celecoxib increases less than proportionally to increasing weight, with 10 kg and 25 kg patients predicted to have 40% and 24% lower clearance, respectively, compared with a 70 kg adult RA patient. Twice-daily administration of 50 mg capsules to JRA patients weighing ≥12 to £25 kg and 100 mg capsules to JRA patients weighing >25 kg should achieve plasma concentrations similar to those observed in a clinical trial that demonstrated the non-inferiority of celecoxib to naproxen 7.5 mg/kg twice daily (see Dosage and Administration (2.3). Celecoxib has not been studied in JRA patients under the age of 2 years, in patients with body weight less than 10 kg (22 lbs), or beyond 24 weeks. Race: Meta-analysis of pharmacokinetic studies has suggested an approximately 40% higher AUC of celecoxib in Blacks compared to Caucasians. The cause and clinical significance of this finding is unknown. Hepatic Insufficiency: A pharmacokinetic study in subjects with mild (Child-Pugh Class A) and moderate (Child-Pugh Class B) hepatic impairment has shown that steady-state celecoxib AUC is increased about 40% and 180%, respectively, above that seen in healthy control subjects. Therefore, the daily recommended dose of Celecoxib Capsules should be reduced by approximately 50% in patients with moderate (Child-Pugh Class B) hepatic impairment. Patients with severe hepatic impairment (Child-Pugh Class C) have not been studied. The use of celecoxib in patients with severe hepatic impairment is not recommended [see Dosage and Administration ( 2.6 ) and Use in Specific Populations ( 8.6 )]. Renal Insufficiency: In a cross-study comparison, celecoxib AUC was approximately 40% lower in patients with chronic renal insufficiency (GFR 35-60 mL/min) than that seen in subjects with normal renal function. No significant relationship was found between GFR and celecoxib clearance. Patients with severe renal insufficiency have not been studied. Similar to other NSAIDs, celecoxib is not recommended in patients with severe renal insufficiency [see Warnings and Precautions ( 5.6 )]. Drug interactions: In vitro studies indicate that Celecoxib is not an inhibitor of cytochrome P450 2C9, 2C19 or 3A4. In vivo studies have shown the following: Lithium: In a study conducted in healthy subjects, mean steady-state lithium plasma levels increased approximately 17% in subjects receiving lithium 450 mg twice daily with Celecoxib Capsules 200 mg twice daily as compared to subjects receiving lithium alone [see Drug Interactions ( 7.2 )]. Fluconazole: Concomitant administration of fluconazole at 200 mg once daily resulted in a two-fold increase in celecoxib plasma concentration. This increase is due to the inhibition of Celecoxib metabolism via P450 2C9 by fluconazole [see Drug Interactions ( 7.5 )]. Other Drugs: The effects of celecoxib on the pharmacokinetics and/or pharmacodynamics of glyburide, ketoconazole, methotrexate [see Drug Interactions ( 7.7 )], phenytoin, and tolbutamide have been studied in vivo and clinically important interactions have not been found.

Pharmacokinetics Table

Table 3: Summary of Single Dose (200 mg) Disposition Kinetics of Celecoxib in Healthy Subjects1
1Subjects under fasting conditions (n=36, 19-52 yrs.)

Mean (%CV) PK Parameter Values

Cmax, ng/mL

Tmax, hr

Effective t1/2, hr

Vss/F, L

CL/F, L/hr

705 (38)

2.8 (37)

11.2 (31)

429 (34)

27.7 (28)

Effective Time

20210101

Version

3

Dosage Forms And Strengths

3 DOSAGE FORMS AND STRENGTHS Capsules: 50 mg, 100 mg, 200 mg and 400 mg ( 3 ) Capsules: 50 mg, 100 mg, 200 mg and 400 mg

Spl Product Data Elements

CELECOXIB CELECOXIB CELECOXIB CELECOXIB CROSCARMELLOSE SODIUM LACTOSE MONOHYDRATE MAGNESIUM STEARATE POVIDONE, UNSPECIFIED SODIUM LAURYL SULFATE GELATIN, UNSPECIFIED Cipla;422;100

Nonclinical Toxicology

13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Celecoxib was not carcinogenic in rats given oral doses up to 200 mg/kg for males and 10 mg/kg for females (approximately 2-to 4-fold the human exposure as measured by the AUC 0-24 at 200 mg twice daily) or in mice given oral doses up to 25 mg/kg for males and 50 mg/kg for females (approximately equal to human exposure as measured by the AUC 0-24 at 200 mg twice daily) for two years. Celecoxib was not mutagenic in an Ames test and a mutation assay in Chinese hamster ovary (CHO) cells, nor clastogenic in a chromosome aberration assay in CHO cells and an in vivo micronucleus test in rat bone marrow. Celecoxib did not impair male and female fertility in rats at oral doses up to 600 mg/kg/day (approximately 11-fold human exposure at 200 mg twice daily based on the AUC 0-24 ). 13.2 Animal Toxicology An increase in the incidence of background findings of spermatocele with or without secondary changes such as epididymal hypospermia as well as minimal to slight dilation of the seminiferous tubules was seen in the juvenile rat. These reproductive findings while apparently treatment-related did not increase in incidence or severity with dose and may indicate an exacerbation of a spontaneous condition. Similar reproductive findings were not observed in studies of juvenile or adult dogs or in adult rats treated with celecoxib. The clinical significance of this observation is unknown.

Application Number

ANDA207446

Brand Name

CELECOXIB

Generic Name

CELECOXIB

Product Ndc

63187-301

Product Type

HUMAN PRESCRIPTION DRUG

Route

ORAL

Laboratory Tests

5.14 Laboratory Tests Because serious GI tract ulcerations and bleeding can occur without warning symptoms, physicians should monitor for signs or symptoms of GI bleeding. Patients on long-term treatment with NSAIDs should have a CBC and a chemistry profile checked periodically. If abnormal liver tests or renal tests persist or worsen, Celecoxib Capsules should be discontinued. In controlled clinical trials, elevated BUN occurred more frequently in patients receiving Celecoxib Capsules compared with patients on placebo. This laboratory abnormality was also seen in patients who received comparator NSAIDs in these studies. The clinical significance of this abnormality has not been established.

Package Label Principal Display Panel

PACKAGE LABEL.PRINCIPAL DISPLAY PANEL 100 mg Bottle Label Rx only NDC 63187-301-60 Celecoxib Capsules 100 mg PHARMACIST: Dispense the accompanying Medication Guide to each patient 60 Capsules 63187-301-60

Information For Patients

17 PATIENT COUNSELING INFORMATION Patients should be informed of the following information before initiating therapy with Celecoxib Capsules and periodically during the course of ongoing therapy. 17.1 Medication Guide Patients should be informed of the availability of a Medication Guide for NSAIDs that accompanies each prescription dispensed, and should be instructed to read the Medication Guide prior to using Celecoxib Capsules. 17.2 Cardiovascular Effects Patients should be informed that Celecoxib Capsules may cause serious CV side effects such as MI or stroke, which may result in hospitalization and even death. Patients should be informed of the signs and symptoms of chest pain, shortness of breath, weakness, slurring of speech, and to seek immediate medical advice if they observe any of these signs or symptoms. [see Warnings and Precautions ( 5.1 )]. Patients should be informed that Celecoxib Capsules can lead to the onset of new hypertension or worsening of preexisting hypertension, and that Celecoxib Capsules may impair the response of some antihypertensive agents. Patients should be instructed on the proper follow up for monitoring of blood pressure. [see Warnings and Precautions ( 5.2 ) and Drug Interactions ( 7.4 )]. 17.3 Gastrointestinal Effects Patients should be informed that Celecoxib Capsules can cause gastrointestinal discomfort and more serious side effects, such as ulcers and bleeding, which may result in hospitalization and even death. Patients should be informed of the signs and symptoms of ulcerations and bleeding, and to seek immediate medical advice if they observe any signs or symptoms that are indicative of these disorders, including epigastric pain, dyspepsia, melena, and hematemesis. [see Warnings and Precautions ( 5.4 )]. 17.4 Hepatic Effects Patients should be informed of the warning signs and symptoms of hepatotoxicity (e.g., nausea, fatigue, lethargy, pruritus, jaundice, right upper quadrant tenderness, and "flu-like" symptoms). Patients should be instructed that they should stop therapy and seek immediate medical therapy if these signs and symptoms occur [see Warnings and Precautions ( 5.5 ), Use in Specific Populations ( 8.6 )]. 17.5 Adverse Skin Reactions Patients should be informed that celecoxib is a sulfonamide and can cause serious skin side effects such as exfoliative dermatitis, SJS, and TEN, which may result in hospitalizations and even death. Although serious skin reactions may occur without warning, patients should be informed of the signs and symptoms of skin rash and blisters, fever, or other signs of hypersensitivity such as itching, and seek immediate medical advice when observing any indicative signs or symptoms. Patients should be advised to stop Celecoxib Capsules immediately if they develop any type of rash and contact their physician as soon as possible. Patients with prior history of sulfa allergy should not take Celecoxib Capsules [see Warnings and Precautions ( 5.8 )]. 17.6 Weight Gain and Edema Long-term administration of NSAIDs including celecoxib has resulted in renal injury. Patients at greatest risk are those taking diuretics, ACE-inhibitors, angiotensin II antagonists, or with renal or liver dysfunction, heart failure, and the elderly [see Warnings and Precautions ( 5.3 , 5.6 ), Use in Specific Populations (8)]. Patients should be instructed to promptly report to their physicians signs or symptoms of unexplained weight gain or edema following treatment with Celecoxib Capsules [see Warnings and Precautions ( 5.3 )]. 17.7 Anaphylactoid Reactions Patients should be informed of the signs and symptoms of an anaphylactoid reaction (e.g., difficulty breathing, swelling of the face or throat). Patients should be instructed to seek immediate emergency assistance if they develop any of these signs and symptoms [see Warnings and Precautions ( 5.7 )]. 17.8 Effects During Pregnancy Patients should be informed that in late pregnancy Celecoxib Capsules should be avoided because it may cause premature closure of the ductus arteriosus [see Warnings and Precautions ( 5.9 ), Use in Specific Populations ( 8.1 )]. 17.9 Preexisting Asthma Patients should be instructed to tell their physicians if they have a history of asthma or aspirin-sensitive asthma because the use of NSAIDs in patients with aspirin-sensitive asthma has been associated with severe bronchospasm, which can be fatal. Patients with this form of aspirin sensitivity should be instructed not to take Celecoxib Capsules. Patients with preexisting asthma should be instructed to seek immediate medical attention if their asthma worsens after taking Celecoxib Capsules [see Warnings and Precautions ( 5.13 )]. Manufactured by: Cipla Limited, Kurkumbh, India Manufactured for: Cipla USA, Inc. 9100 S. Dadeland Blvd., Suite 1500 Miami, FL 33156 Revised: 7/2015 Repackaged by: Proficient Rx LP Thousand Oaks, CA 91320

Spl Medguide

Medication Guide for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) (See the end of this Medication Guide for a list of prescription NSAID medicines.) What is the most important information I should know about medicines called Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)? NSAID medicines may increase the chance of a heart attack or stroke that can lead to death. This chance increases: • with increasing doses of NSAID medicines • with longer use of NSAID medicines • in people who have heart disease NSAID medicines should never be used right before or after a heart surgery called a "coronary artery bypass graft (CABG)." NSAID medicines can cause ulcers and bleeding in the stomach and intestines at any time during treatment. Ulcers and bleeding: • can happen without warning symptoms • may cause death The chance of a person getting an ulcer or bleeding increases with: • increasing doses of NSAID medicines • taking medicines called "corticosteroids" and "anticoagulants" • longer use • smoking • drinking alcohol • older age • having poor health NSAID medicines should only be used: • exactly as prescribed • at the lowest dose possible for your treatment • for the shortest time needed What are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)? NSAID medicines are used to treat pain and redness, swelling, and heat (inflammation) from medical conditions such as: • different types of arthritis • menstrual cramps and other types of short-term pain Who should not take a Non-Steroidal Anti-Inflammatory Drug (NSAID)? Do not take an NSAID medicine: • if you had an asthma attack, hives, or other allergic reaction with aspirin or any other NSAID medicine • for pain right before or after heart bypass surgery Tell your healthcare provider: • about all of your medical conditions. • about all of the medicines you take. NSAIDs and some other medicines can interact with each other and cause serious side effects. Keep a list of your medicines to show to your healthcare provider and pharmacist. • if you are pregnant, NSAID medicines should not be used past 30 weeks of pregnancy. • if you are breastfeeding, talk to your doctor. What are the possible side effects of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)? Serious side effects include: Other side effects include: ● heart attack ● stomach pain ● heart attack ● constipation ● stroke ● diarrhea ● high blood pressure ● gas ● heart failure from body swelling (fluid retention) ● heartburn ● kidney problems including kidney failure ● nausea ● bleeding and ulcers in the stomach and intestine ● vomiting ● low red blood cells (anemia) ● dizziness ● life-threatening skin reactions ● life-threatening allergic reactions ● liver problems including liver failure ● asthma attacks in people who have asthma Get emergency help right away if you have any of the following symptoms: ● shortness of breath or trouble breathing ● slurred speech ● chest pain ● swelling of the face or throat ● weakness in one part or side of your body Stop your NSAID medicine and call your healthcare provider right away if you have any of the following symptoms: ● nausea ● more tired or weaker than usual ● vomit blood ● itching ● there is blood in your bowel movement or it is black and sticky like tar ● your skin or eyes look yellow ● unusual weight gain ● stomach pain ● skin rash or blisters with fever ● flu-like symptoms ● swelling of the arms and legs, hands and feet These are not all the side effects with NSAID medicines. Talk to your healthcare provider or pharmacist for more information about NSAID medicines. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. Other information about Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) • Aspirin is an NSAID medicine but it does not increase the chance of a heart attack. Aspirin can cause bleeding in the brain, stomach, and intestines. Aspirin can also cause ulcers in the stomach and intestines. • Some of these NSAID medicines are sold in lower doses without a prescription (over -the -counter). Talk to your healthcare provider before using over -the -counter NSAIDs for more than 10 days. NSAID medicines requiring a prescription Generic Name Tradename Celecoxib Celebrex Diclofenac Zorvolex, Cataflam, Cambia, Voltaren, Voltaren gel, Arthrotec (combined with misoprostol), Flector, Zipsor, Pennsaid Diflunisal Dolobid Etodolac Lodine, Lodine XL Fenoprofen Nalfon, Nalfon 200 Flurbiprofen Ansaid Ibuprofen Motrin, Tab-Profen, Vicoprofen contains the same dose of ibuprofen as over-the-counter (OTC) NSAIDs, and is usually used for less than 10 days to treat pain. The OTC NSAID label warns that long term continuous use may increase the risk of heart attack or stroke. Vicoprofen (combined with hydrocodone), Combunox (combined with oxycodone), Duexis (combined with famotidine) Indomethacin Tivorbex, Indocin, Indocin SR, Indo-Lemmon, Indomethagan Ketoprofen Oruvail, Nexcede Ketorolac Toradol, Sprix Mefenamic Acid Ponstel Meloxicam Mobic Nabumetone Relafen Naproxen Naprosyn, Anaprox, Anaprox DS, EC-Naprosyn, Naprelan, Naprapac (copackaged with lansoprazole), Treximet (combined with sumatriptan succinate) and Vimovo (combined with esomeprazole magnesium) Oxaprozin Daypro Piroxicam Feldene Sulindac Clinoril Tolmetin Tolectin, Tolectin DS, Tolectin 600 This Medication Guide has been approved by the U.S. Food and Drug Administration Disclaimer: Other Brands listed are the registered trademarks of their respective owners and are not trademarks of Cipla Limited. Manufactured by: Cipla Ltd, Kurkumbh, India Manufactured for: Cipla USA, Inc. 9100 S. Dadeland Blvd., Suite 1500 Miami, FL 33156 Revised: 7/2015 Repackaged by: Proficient Rx LP Thousand Oaks, CA 91320

Spl Medguide Table

Serious side effects include:

Other side effects include:

● heart attack

● stomach pain

● heart attack

● constipation

● stroke

● diarrhea

● high blood pressure

● gas

● heart failure from body swelling (fluid retention)

● heartburn

● kidney problems including kidney failure

● nausea

● bleeding and ulcers in the stomach and intestine

● vomiting

● low red blood cells (anemia)

● dizziness

● life-threatening skin reactions

● life-threatening allergic reactions

● liver problems including liver failure

● asthma attacks in people who have asthma

Clinical Studies

14 CLINICAL STUDIES 14.1 Osteoarthritis Celecoxib has demonstrated significant reduction in joint pain compared to placebo. Celecoxib was evaluated for treatment of the signs and the symptoms of OA of the knee and hip in placebo- and active-controlled clinical trials of up to 12 weeks duration. In patients with OA, treatment with Celecoxib Capsules 100 mg twice daily or 200 mg once daily resulted in improvement in WOMAC (Western Ontario and McMaster Universities) osteoarthritis index, a composite of pain, stiffness, and functional measures in OA. In three 12-week studies of pain accompanying OA flare, Celecoxib Capsules doses of 100 mg twice daily and 200 mg twice daily provided significant reduction of pain within 24-48 hours of initiation of dosing. At doses of 100 mg twice daily or 200 mg twice daily the effectiveness of celecoxib was shown to be similar to that of naproxen 500 mg twice daily. Doses of 200 mg twice daily provided no additional benefit above that seen with 100 mg twice daily. A total daily dose of 200 mg has been shown to be equally effective whether administered as 100 mg twice daily or 200 mg once daily. 14.2 Rheumatoid Arthritis Celecoxib Capsules has demonstrated significant reduction in joint tenderness/pain and joint swelling compared to placebo. Celecoxib Capsules was evaluated for treatment of the signs and symptoms of RA in placebo- and active-controlled clinical trials of up to 24 weeks in duration. Celecoxib was shown to be superior to placebo in these studies, using the ACR20 Responder Index, a composite of clinical, laboratory, and functional measures in RA. Celecoxib Capsules doses of 100 mg twice daily and 200 mg twice daily were similar in effectiveness and both were comparable to naproxen 500 mg twice daily. Although Celecoxib Capsules 100 mg twice daily and 200 mg twice daily provided similar overall effectiveness, some patients derived additional benefit from the 200 mg twice daily dose. Doses of 400 mg twice daily provided no additional benefit above that seen with 100-200 mg twice daily. 14.3 Juvenile Rheumatoid Arthritis In a 12-week, randomized, double-blind active-controlled, parallel-group, multicenter, non-inferiority study, patients from 2 years to 17 years of age with pauciarticular, polyarticular course JRA or systemic onset JRA (with currently inactive systemic features), received one of the following treatments: celecoxib 3 mg/kg (to a maximum of 150 mg) twice daily; celecoxib 6 mg/kg (to a maximum of 300 mg) twice daily; or naproxen 7.5 mg/kg (to a maximum of 500 mg) twice daily. The response rates were based upon the JRA Definition of Improvement greater than or equal to 30% (JRA DOI 30) criterion, which is a composite of clinical, laboratory, and functional measures of JRA. The JRA DOI 30 response rates at week 12 were 69%, 80% and 67% in the celecoxib 3 mg/kg BID, celecoxib 6 mg/kg BID, and naproxen 7.5 mg/kg BID treatment groups, respectively. The efficacy and safety of celecoxib for JRA have not been studied beyond six months. The long-term cardiovascular toxicity in children exposed to celecoxib has not been evaluated and it is unknown if the long-term risk may be similar to that seen in adults exposed to celecoxib or other COX-2 selective and non-selective NSAIDs [(see Boxed Warning , Warnings and Precautions ( 5.12 )]. 14.4 Ankylosing Spondylitis Celecoxib Capsules was evaluated in AS patients in two placebo- and active-controlled clinical trials of 6 and 12 weeks duration. Celecoxib Capsules at doses of 100 mg twice daily, 200 mg once daily and 400 mg once daily was shown to be statistically superior to placebo in these studies for all three co-primary efficacy measures assessing global pain intensity (Visual Analogue Scale), global disease activity (Visual Analogue Scale) and functional impairment (Bath Ankylosing Spondylitis Functional Index). In the 12-week study, there was no difference in the extent of improvement between the 200 mg and 400 mg Celecoxib Capsules doses in a comparison of mean change from baseline, but there was a greater percentage of patients who responded to Celecoxib Capsules 400 mg, 53%, than to Celecoxib Capsules 200 mg, 44%, using the Assessment in Ankylosing Spondylitis response criteria (ASAS 20). The ASAS 20 defines a responder as improvement from baseline of at least 20% and an absolute improvement of at least 10 mm, on a 0 to 100 mm scale, in at least three of the four following domains: patient global pain, Bath Ankylosing Spondylitis Functional Index, and inflammation. The responder analysis also demonstrated no change in the responder rates beyond 6 weeks. 14.5 Analgesia, including Primary Dysmenorrhea In acute analgesic models of post-oral surgery pain, post-orthopedic surgical pain, and primary dysmenorrhea, Celecoxib relieved pain that was rated by patients as moderate to severe. Single doses [see Dosage and Administration ( 2.5 )] of Celecoxib provided pain relief within 60 minutes. 14.6 Special Studies Adenomatous Polyp Prevention Studies: Cardiovascular safety was evaluated in two randomized, double-blind, placebo-controlled, three year studies involving patients with Sporadic Adenomatous Polyps treated with Celecoxib Capsules: the APC trial (Adenoma Prevention with Celecoxib) and the PreSAP trial (Prevention of Spontaneous Adenomatous Polyps). In the APC trial, there was a dose-related increase in the composite endpoint (adjudicated) of cardiovascular death, myocardial infarction, or stroke with celecoxib compared to placebo over 3 years of treatment. The PreSAP trial did not demonstrate a statistically significant increased risk for the same composite endpoint (adjudicated): • In the APC trial, the hazard ratios compared to placebo for a composite endpoint (adjudicated) of cardiovascular death, myocardial infarction, or stroke were 3.4 (95% CI 1.4 - 8.5) with celecoxib 400 mg twice daily and 2.8 (95% CI 1.1 - 7.2) with celecoxib 200 mg twice daily. Cumulative rates for this composite endpoint over 3 years were 3.0% (20/671 subjects) and 2.5% (17/685 subjects), respectively, compared to 0.9% (6/679 subjects) with placebo treatment. The increases in both celecoxib dose groups versus placebo-treated patients were mainly due to an increased incidence of myocardial infarction. • In the PreSAP trial, the hazard ratio for this same composite endpoint (adjudicated) was 1.2 (95% CI 0.6 - 2.4) with celecoxib 400 mg once daily compared to placebo. Cumulative rates for this composite endpoint over 3 years were 2.3% (21/933 subjects) and 1.9% (12/628 subjects), respectively. Clinical trials of other COX-2 selective and non-selective NSAIDs of up to three-years duration have shown an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. As a result, all NSAIDs are considered potentially associated with this risk. Celecoxib Long-Term Arthritis Safety Study (CLASS): This was a prospective, long-term, safety outcome study conducted post-marketing in approximately 5,800 OA patients and 2,200 RA patients. Patients received Celecoxib Capsules 400 mg twice daily (4-fold and 2-fold the recommended OA and RA doses, respectively), ibuprofen 800 mg three times daily or diclofenac 75 mg twice daily (common therapeutic doses). Median exposures for celecoxib (n = 3,987) and diclofenac (n = 1,996) were 9 months while ibuprofen (n = 1,985) was 6 months. The primary endpoint of this outcome study was the incidence of complicated ulcers (gastrointestinal bleeding, perforation or obstruction). Patients were allowed to take concomitant low-dose (£ 325 mg/day) aspirin (ASA) for cardiovascular prophylaxis (ASA subgroups: celecoxib, n = 882; diclofenac, n = 445; ibuprofen, n = 412). Differences in the incidence of complicated ulcers between celecoxib and the combined group of ibuprofen and diclofenac were not statistically significant. Patients on celecoxib and concomitant low-dose ASA (N=882) experienced 4-fold higher rates of complicated ulcers compared to those not on ASA (N=3105). The Kaplan-Meier rate for complicated ulcers at 9 months was 1.12% versus 0.32% for those on low dose ASA and those not on ASA, respectively [see Warnings and Precautions (5.4)]. The estimated cumulative rates at 9 months of complicated and symptomatic ulcers for patients treated with Celecoxib Capsules 400 mg twice daily are described in Table 4. Table 4 also displays results for patients less than or greater than 65 years of age. The difference in rates between celecoxib alone and celecoxib with ASA groups may be due to the higher risk for GI events in ASA users. Table 4: Complicated and Symptomatic Ulcer Rates in Patients Taking Celecoxib Capsules 400 mg Twice Daily (Kaplan-Meier Rates at 9 months [%]) Based on Risk Factors All Patients Celecoxib alone (n=3105) 0.78 Celecoxib with ASA (n=882) 2.19 Patients <65 Years Celecoxib alone (n=2025) 0.47 Celecoxib with ASA (n=403) 1.26 Patients ≥65 Years Celecoxib alone (n=1080) 1.40 Celecoxib with ASA (n=479) 3.06 In a small number of patients with a history of ulcer disease, the complicated and symptomatic ulcer rates in patients taking celecoxib alone or celecoxib with ASA were, respectively, 2.56% (n=243) and 6.85% (n=91) at 48 weeks. These results are to be expected in patients with a prior history of ulcer disease [see Warnings and Precautions ( 5.4 ) and Adverse Reactions ( 6.1 )]. Cardiovascular safety outcomes were also evaluated in the CLASS trial. Kaplan-Meier cumulative rates for investigator-reported serious cardiovascular thromboembolic adverse events (including MI, pulmonary embolism, deep venous thrombosis, unstable angina, transient ischemic attacks, and ischemic cerebrovascular accidents) demonstrated no differences between the celecoxib, diclofenac, or ibuprofen treatment groups. The cumulative rates in all patients at nine months for celecoxib, diclofenac, and ibuprofen were 1.2%, 1.4%, and 1.1%, respectively. The cumulative rates in non-ASA users at nine months in each of the three treatment groups were less than 1%. The cumulative rates for myocardial infarction in non-ASA users at nine months in each of the three treatment groups were less than 0.2%. There was no placebo group in the CLASS trial, which limits the ability to determine whether the three drugs tested had no increased risk of CV events or if they all increased the risk to a similar degree. Endoscopic Studies: The correlation between findings of short-term endoscopic studies with Celecoxib Capsules and the relative incidence of clinically significant serious upper GI events with long-term use has not been established. Serious clinically significant upper GI bleeding has been observed in patients receiving Celecoxib Capsules in controlled and open-labeled trials [see Warnings and Precautions ( 5.4 ) and Clinical Studies ( 14.6 )] A randomized, double-blind study in 430 RA patients was conducted in which an endoscopic examination was performed at 6 months. The incidence of endoscopic ulcers in patients taking Celecoxib Capsules 200 mg twice daily was 4% vs. 15% for patients taking diclofenac SR 75 mg twice daily. However, Celecoxib was not statistically different than diclofenac for clinically relevant GI outcomes in the CLASS trial [see Clinical Studies ( 14.6 )]. The incidence of endoscopic ulcers was studied in two 12-week, placebo-controlled studies in 2157 OA and RA patients in whom baseline endoscopies revealed no ulcers. There was no dose relationship for the incidence of gastroduodenal ulcers and the dose of Celecoxib Capsules (50 mg to 400 mg twice daily). The incidence for naproxen 500 mg twice daily was 16.2 and 17.6% in the two studies, for placebo was 2.0 and 2.3%, and for all doses of Celecoxib Capsules the incidence ranged between 2.7%-5.9%. There have been no large, clinical outcome studies to compare clinically relevant GI outcomes with Celecoxib Capsules and naproxen. In the endoscopic studies, approximately 11% of patients were taking aspirin (£ 325 mg/day). In the celecoxib groups, the endoscopic ulcer rate appeared to be higher in aspirin users than in non-users. However, the increased rate of ulcers in these aspirin users was less than the endoscopic ulcer rates observed in the active comparator groups, with or without aspirin.

Clinical Studies Table

Table 4: Complicated and Symptomatic Ulcer Rates in Patients Taking Celecoxib Capsules 400 mg Twice Daily (Kaplan-Meier Rates at 9 months [%]) Based on Risk Factors

All Patients

Celecoxib alone (n=3105)

0.78

Celecoxib with ASA (n=882)

2.19

Patients <65 Years

Celecoxib alone (n=2025)

0.47

Celecoxib with ASA (n=403)

1.26

Patients ≥65 Years

Celecoxib alone (n=1080)

1.40

Celecoxib with ASA (n=479)

3.06

Geriatric Use

8.5 Geriatric Use Of the total number of patients who received Celecoxib Capsules in pre-approval clinical trials, more than 3,300 were 65-74 years of age, while approximately 1,300 additional patients were 75 years and over. No substantial differences in effectiveness were observed between these subjects and younger subjects. In clinical studies comparing renal function as measured by the GFR, BUN and creatinine, and platelet function as measured by bleeding time and platelet aggregation, the results were not different between elderly and young volunteers. However, as with other NSAIDs, including those that selectively inhibit COX-2, there have been more spontaneous post-marketing reports of fatal GI events and acute renal failure in the elderly than in younger patients [see Warnings and Precautions ( 5.4 , 5.6 )].

Labor And Delivery

8.2 Labor and Delivery Celecoxib produced no evidence of delayed labor or parturition at oral doses up to 100 mg/kg in rats (approximately 7-fold human exposure as measured by the AUC 0-24 at 200 mg BID). The effects of Celecoxib on labor and delivery in pregnant women are unknown.

Nursing Mothers

8.3 Nursing Mothers Limited data from 3 published reports that included a total of 12 breastfeeding women showed low levels of Celecoxib in breast milk. The calculated average daily infant dose was 10-40 mcg/kg/day, less than 1% of the weight-based therapeutic dose for a two-year old-child. A report of two breastfed infants 17 and 22 months of age did not show any adverse events. Caution should be exercised when Celecoxib is administered to a nursing woman.

Pediatric Use

8.4 Pediatric Use Celecoxib Capsules is approved for relief of the signs and symptoms of Juvenile Rheumatoid Arthritis in patients 2 years and older. Safety and efficacy have not been studied beyond six months in children. The long-term cardiovascular toxicity in children exposed to Celecoxib Capsules has not been evaluated and it is unknown if long-term risks may be similar to that seen in adults exposed to Celecoxib Capsules or other COX-2 selective and non-selective NSAIDs [(see Boxed Warning , Warnings and Precautions ( 5.12 ), and Clinical Studies ( 14.3 )]. The use of Celecoxib Capsules in patients 2 years to 17 years of age with pauciarticular, polyarticular course JRA or in patients with systemic onset JRA was studied in a 12-week, double-blind, active controlled, pharmacokinetic, safety and efficacy study, with a 12-week open-label extension. Celecoxib Capsules has not been studied in patients under the age of 2 years, in patients with body weight less than 10 kg (22 lbs), and in patients with active systemic features. Patients with systemic onset JRA (without active systemic features) appear to be at risk for the development of abnormal coagulation laboratory tests. In some patients with systemic onset JRA, both celecoxib and naproxen were associated with mild prolongation of activated partial thromboplastin time (APTT) but not prothrombin time (PT). NSAIDs including Celecoxib Capsules should be used only with caution in patients with systemic onset JRA, due to the risk of disseminated intravascular coagulation. Patients with systemic onset JRA should be monitored for the development of abnormal coagulation tests [see Dosage and Administration ( 2.3 ), Warnings and Precautions ( 5 ,. 12 ), Adverse Reactions ( 6.3 ), Animal Toxicology ( 13.2 ), Clinical Studies ( 14.3 )]. Alternative therapies for treatment of JRA should be considered in pediatric patients identified to be CYP2C9 poor metabolizers [see Poor Metabolizers of CYP2C9 substrates ( 8.8 )].

Pregnancy

5.9 Pregnancy In late pregnancy, starting at 30 weeks gestation, celecoxib should be avoided because it may cause premature closure of the ductus arteriosus [see Use in Specific Populations ( 8.1 )].

Use In Specific Populations

8 USE IN SPECIFIC POPULATIONS • Pregnancy Category C prior to 30 weeks gestation; Category D starting at 30 weeks gestation ( 5.9 , 8.1 , 17.8 ) 8.1 Pregnancy Pregnancy Category C. Pregnancy category D from 30 weeks of gestation onward Teratogenic effects: Celecoxib at oral doses ≥150 mg/kg/day (approximately 2-fold human exposure at 200 mg twice daily as measured by AUC 0-24 ), caused an increased incidence of ventricular septal defects, a rare event, and fetal alterations, such as ribs fused, sternebrae fused and sternebrae misshapen when rabbits were treated throughout organogenesis. A dose-dependent increase in diaphragmatic hernias was observed when rats were given celecoxib at oral doses ≥30 mg/kg/day (approximately 6-fold human exposure based on the AUC 0-24 at 200 mg twice daily) throughout organogenesis. There are no studies in pregnant women. Celecoxib should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Nonteratogenic effects: Celecoxib produced pre-implantation and post-implantation losses and reduced embryo/fetal survival in rats at oral dosages ≥50 mg/kg/day (approximately 6-fold human exposure based on the AUC 0-24 at 200 mg twice daily). These changes are expected with inhibition of prostaglandin synthesis and are not the result of permanent alteration of female reproductive function, nor are they expected at clinical exposures. No studies have been conducted to evaluate the effect of celecoxib on the closure of the ductus arteriosus in humans. Therefore, use of celecoxib during the third trimester of pregnancy should be avoided. 8.2 Labor and Delivery Celecoxib produced no evidence of delayed labor or parturition at oral doses up to 100 mg/kg in rats (approximately 7-fold human exposure as measured by the AUC 0-24 at 200 mg BID). The effects of Celecoxib on labor and delivery in pregnant women are unknown. 8.3 Nursing Mothers Limited data from 3 published reports that included a total of 12 breastfeeding women showed low levels of Celecoxib in breast milk. The calculated average daily infant dose was 10-40 mcg/kg/day, less than 1% of the weight-based therapeutic dose for a two-year old-child. A report of two breastfed infants 17 and 22 months of age did not show any adverse events. Caution should be exercised when Celecoxib is administered to a nursing woman. 8.4 Pediatric Use Celecoxib Capsules is approved for relief of the signs and symptoms of Juvenile Rheumatoid Arthritis in patients 2 years and older. Safety and efficacy have not been studied beyond six months in children. The long-term cardiovascular toxicity in children exposed to Celecoxib Capsules has not been evaluated and it is unknown if long-term risks may be similar to that seen in adults exposed to Celecoxib Capsules or other COX-2 selective and non-selective NSAIDs [(see Boxed Warning , Warnings and Precautions ( 5.12 ), and Clinical Studies ( 14.3 )]. The use of Celecoxib Capsules in patients 2 years to 17 years of age with pauciarticular, polyarticular course JRA or in patients with systemic onset JRA was studied in a 12-week, double-blind, active controlled, pharmacokinetic, safety and efficacy study, with a 12-week open-label extension. Celecoxib Capsules has not been studied in patients under the age of 2 years, in patients with body weight less than 10 kg (22 lbs), and in patients with active systemic features. Patients with systemic onset JRA (without active systemic features) appear to be at risk for the development of abnormal coagulation laboratory tests. In some patients with systemic onset JRA, both celecoxib and naproxen were associated with mild prolongation of activated partial thromboplastin time (APTT) but not prothrombin time (PT). NSAIDs including Celecoxib Capsules should be used only with caution in patients with systemic onset JRA, due to the risk of disseminated intravascular coagulation. Patients with systemic onset JRA should be monitored for the development of abnormal coagulation tests [see Dosage and Administration ( 2.3 ), Warnings and Precautions ( 5 ,. 12 ), Adverse Reactions ( 6.3 ), Animal Toxicology ( 13.2 ), Clinical Studies ( 14.3 )]. Alternative therapies for treatment of JRA should be considered in pediatric patients identified to be CYP2C9 poor metabolizers [see Poor Metabolizers of CYP2C9 substrates ( 8.8 )]. 8.5 Geriatric Use Of the total number of patients who received Celecoxib Capsules in pre-approval clinical trials, more than 3,300 were 65-74 years of age, while approximately 1,300 additional patients were 75 years and over. No substantial differences in effectiveness were observed between these subjects and younger subjects. In clinical studies comparing renal function as measured by the GFR, BUN and creatinine, and platelet function as measured by bleeding time and platelet aggregation, the results were not different between elderly and young volunteers. However, as with other NSAIDs, including those that selectively inhibit COX-2, there have been more spontaneous post-marketing reports of fatal GI events and acute renal failure in the elderly than in younger patients [see Warnings and Precautions ( 5.4 , 5.6 )]. 8.6 Hepatic Insufficiency The daily recommended dose of Celecoxib Capsules in patients with moderate hepatic impairment (Child-Pugh Class B) should be reduced by 50%. The use of Celecoxib Capsules in patients with severe hepatic impairment is not recommended [see Dosage and Administration ( 2.6 ) and Clinical Pharmacology ( 12.3 )]. 8.7 Renal Insufficiency Celecoxib Capsules is not recommended in patients with severe renal insufficiency [see Warnings and Precautions ( 5.6 ) and Clinical Pharmacology ( 12.3 )]. 8.8 Poor Metabolizers of CYP2C9 Substrates Patients who are known or suspected to be poor CYP2C9 metabolizers based on genotype or previous history/experience with other CYP2C9 substrates (such as warfarin, phenytoin) should be administered celecoxib with caution. Consider starting treatment at half the lowest recommended dose in poor metabolizers (i.e., CYP2C9*3/*3). Alternative management should be considered in JRA patients identified to be CYP2C9 poor metabolizers. [see Dosage and Administration ( 2.6 ) and Clinical Pharmacology ( 12.5 )].

How Supplied

16 HOW SUPPLIED/STORAGE AND HANDLING Celecoxib Capsules are available in the following strengths and configurations: Celecoxib Capsules 100 mg: White to off white colored granules filled in size 2 hard gelatin white capsule, axially printed with ‘Cipla’ on cap & ‘422’ over ‘100 mg’ on body in blue ink. Bottle of 30 NDC 63187-301-30 Bottle of 60 NDC 63187-301-60 Bottle of 90 NDC 63187-301-90 Storage: Store at 25°C (77°F) [see USP Controlled Room Temperature]

Boxed Warning

WARNING: CARDIOVASCULAR AND GASTROINTESTINAL RISKS See full prescribing information for complete boxed warning Cardiovascular Risk • Celecoxib may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. All NSAIDs may have a similar risk. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. ( 5.1 , 14.6 ) • Celecoxib is contraindicated for the treatment of peri-operative pain in the setting of coronary artery bypass graft (CABG) surgery. ( 4 , 5.1 ) Gastrointestinal Risk • NSAIDs, including Celecoxib, cause an increased risk of serious gastrointestinal adverse events including bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal (GI) events. ( 5.4 ) WARNING: CARDIOVASCULAR AND GASTROINTESTINAL RISKS Cardiovascular Risk • Celecoxib may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. All non-steroidal anti-inflammatory drugs (NSAIDs) may have a similar risk. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. ( 5.1 , 14.6 ) • Celecoxib is contraindicated for the treatment of peri-operative pain in the setting of coronary artery bypass graft (CABG) surgery. ( 4 , 5.1 ) Gastrointestinal Risk • NSAIDs, including Celecoxib, cause an increased risk of serious gastrointestinal adverse events including bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal events. ( 5.4 )

Learning Zones

The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.

Disclaimer

The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).

Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.

Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.