- Home
- /
- Drugs
- /
- P
- /
- Pantoprazole Sodium
- /
- Pantoprazole sodium PANTOPRAZOLE SODIUM 40 mg/1 Ajanta Pharma USA Inc.
Pantoprazole sodium
Summary of product characteristics
Adverse Reactions
6 ADVERSE REACTIONS The following serious adverse reactions are described below and elsewhere in labeling: Acute Tubulointerstitial Nephritis [see Warnings and Precautions ( 5.2 )] Clostridium difficile -Associated Diarrhea [see Warnings and Precautions ( 5.3 )] Bone Fracture [see Warnings and Precautions ( 5.4 )] Severe Cutaneous Adverse Reactions [see Warnings and Precautions ( 5.5 )] Cutaneous and Systemic Lupus Erythematosus [see Warnings and Precautions ( 5.6 )] Cyanocobalamin (Vitamin B-12) Deficiency [see Warnings and Precautions ( 5.7 )] Hypomagnesemia and Mineral Metabolism [see Warnings and Precautions ( 5.8 )] Fundic Gland Polyps [see Warnings and Precautions ( 5.10 )] Most common adverse reactions are: For adult use (greater than 2%): headache, diarrhea, nausea, abdominal pain, vomiting, flatulence, dizziness, and arthralgia. ( 6.1 ) For pediatric use (greater than 4%): URI, headache, fever, diarrhea, vomiting, rash, and abdominal pain. ( 6.1 ) To report SUSPECTED ADVERSE REACTIONS, contact Ajanta Pharma USA, Inc., at 1-855-664-7744 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch . 6.1 Clinical Trials Experience The adverse reaction profiles for pantoprazole sodium for delayed-release oral suspension and pantoprazole sodium delayed-release tablets are similar. Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. Adults Safety in nine randomized comparative US clinical trials in patients with GERD included 1,473 patients on oral pantoprazole (20 mg or 40 mg), 299 patients on an H2-receptor antagonist, 46 patients on another PPI, and 82 patients on placebo. The most frequently occurring adverse reactions are listed in Table 3. Table 3: Adverse Reactions Reported in Clinical Trials of Adult Patients with GERD at a Frequency of greater than 2% Pantoprazole Comparators Placebo (n=1473) (n=345) (n=82) % % % Headache 12.2 12.8 8.5 Diarrhea 8.8 9.6 4.9 Nausea 7.0 5.2 9.8 Abdominal pain 6.2 4.1 6.1 Vomiting 4.3 3.5 2.4 Flatulence 3.9 2.9 3.7 Dizziness 3.0 2.9 1.2 Arthralgia 2.8 1.4 1.2 Additional adverse reactions that were reported for pantoprazole in clinical trials with a frequency of less than or equal to 2% are listed below by body system: Body as a Whole: allergic reaction, pyrexia, photosensitivity reaction, facial edema Gastrointestinal: constipation, dry mouth, hepatitis Hematologic: leukopenia, thrombocytopenia Metabolic/Nutritional: elevated CK (creatine kinase), generalized edema, elevated triglycerides, liver enzymes elevated Musculoskeletal: myalgia Nervous: depression, vertigo Skin and Appendages: urticaria, rash, pruritus Special Senses: blurred vision Pediatric Patients Safety of pantoprazole in the treatment of EE associated with GERD was evaluated in pediatric patients ages 1 year through 16 years in three clinical trials. Safety trials involved pediatric patients with EE; however, as EE is uncommon in the pediatric population, 249 pediatric patients with endoscopically-proven or symptomatic GERD were also evaluated. All adult adverse reactions to pantoprazole are considered relevant to pediatric patients. In patients ages 1 year through 16 years, the most commonly reported (greater than 4%) adverse reactions include: URI, headache, fever, diarrhea, vomiting, rash, and abdominal pain. For safety information in patients less than 1 year of age see Use in Specific Populations (8.4) . Additional adverse reactions that were reported for pantoprazole in pediatric patients in clinical trials with a frequency of less than or equal to 4% are listed below by body system: Body as a Whole: allergic reaction, facial edema Gastrointestinal: constipation, flatulence, nausea Metabolic/Nutritional: elevated triglycerides, elevated liver enzymes, elevated CK (creatine kinase) Musculoskeletal: arthralgia, myalgia Nervous: dizziness, vertigo Skin and Appendages: urticaria The following adverse reactions seen in adults in clinical trials were not reported in pediatric patients in clinical trials, but are considered relevant to pediatric patients: photosensitivity reaction, dry mouth, hepatitis, thrombocytopenia, generalized edema, depression, pruritus, leukopenia, and blurred vision. Zollinger-Ellison (ZE) Syndrome In clinical studies of ZE Syndrome, adverse reactions reported in 35 patients taking pantoprazole 80 mg/day to 240 mg/day for up to 2 years were similar to those reported in adult patients with GERD. 6.2 Postmarketing Experience The following adverse reactions have been identified during postapproval use of pantoprazole. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These adverse reactions are listed below by body system: Gastrointestinal Disorders: fundic gland polyps General Disorders and Administration Conditions: asthenia, fatigue, malaise Hematologic: pancytopenia, agranulocytosis Hepatobiliary Disorders: hepatocellular damage leading to jaundice and hepatic failure Immune System Disorders: anaphylaxis (including anaphylactic shock), systemic lupus erythematosus Infections and Infestations: Clostridium difficile associated diarrhea Investigations: weight changes Metabolism and Nutritional Disorders: hypomagnesemia, hypocalcemia, hypokalemia, hyponatremia Musculoskeletal Disorders: rhabdomyolysis, bone fracture Nervous: ageusia, dysgeusia Psychiatric Disorders: hallucination, confusion, insomnia, somnolence Renal and Urinary Disorders: acute tubulointerstitial nephritis Skin and Subcutaneous Tissue Disorders: severe dermatologic reactions (some fatal), including erythema multiforme, SJS/TEN, DRESS, AGEP, angioedema (Quincke’s edema) and cutaneous lupus erythematosus
Contraindications
4 CONTRAINDICATIONS Pantoprazole sodium for delayed-release oral suspension is contraindicated in patients with known hypersensitivity to any component of the formulation or any substituted benzimidazole. Hypersensitivity reactions may include anaphylaxis, anaphylactic shock, angioedema, bronchospasm, acute tubulointerstitial nephritis, and urticaria [see Warnings and Precautions ( 5.2 ), Adverse Reactions ( 6 )] . Proton pump inhibitors (PPIs), including pantoprazole, are contraindicated in patients receiving rilpivirine-containing products [see Drug Interactions ( 7 )] . Patients with known hypersensitivity to any component of the formulation or to substituted benzimidazoles ( 4 ) Patients receiving rilpivirine-containing products ( 4 , 7 )
Description
11 DESCRIPTION The active ingredient in pantoprazole sodium for delayed-release oral suspension a PPI, is a substituted benzimidazole, sodium 5-(difluoromethoxy)-2-[[(3,4-dimethoxy-2-pyridinyl)methyl] sulfinyl]-1 H -benzimidazole sesquihydrate, a compound that inhibits gastric acid secretion. Its empirical formula is C 16 H 14 F 2 N 3 NaO 4 S x 1.5 H 2 O, with a molecular weight of 432.4. The structural formula is: Pantoprazole sodium sesquihydrate is a white to off-white powder. Pantoprazole has weakly basic and acidic properties. Pantoprazole sodium sesquihydrate is freely soluble in water, in methanol, in dehydrated alcohol, practically insoluble in hexane and in dichloromethane. The stability of the compound in aqueous solution is pH-dependent. The rate of degradation increases with decreasing pH. At ambient temperature, the degradation half-life is approximately 2.8 hours at pH 5 and approximately 220 hours at pH 7.8. Pantoprazole sodium for delayed-release oral suspension is supplied as a for delayed-release oral suspension in unit dose packets, available in one strength 40 mg pantoprazole, (equivalent to 45.1 mg of pantoprazole sodium). Pantoprazole sodium for delayed-release oral suspension contains the following inactive ingredients: crospovidone, hypromellose, methacrylic acid and ethyl acrylate copolymer dispersion, microcrystalline cellulose, polysorbate 80, sodium carbonate, sodium hydroxide, talc, titanium dioxide, triethyl citrate, polyethylene glycol and yellow ferric oxide. structure
Dosage And Administration
2 DOSAGE AND ADMINISTRATION Indication Dose Frequency Short-Term Treatment of Erosive Esophagitis Associated With GERD ( 2.1 ) Adults 40 mg Once Daily for up to 8 wks Children (5 years and older) ≥15 kg to <40 kg 20 mg Once Daily for up to 8 wks ≥ 40 kg 40 mg Maintenance of Healing of Erosive Esophagitis ( 2.1 ) Adults 40 mg Once Daily* Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome ( 2.1 ) Adults 40 mg Twice Daily * Controlled studies did not extend beyond 12 months See full prescribing information for administration instructions 2.1 Recommended Dosing Schedule Pantoprazole sodium is supplied as delayed-release granules in packets for preparation of oral suspensions. The recommended dosages are outlined in Table 1. Table 1: Recommended Dosing Schedule for Pantoprazole Sodium for Delayed-Release Oral Suspension * For adult patients who have not healed after 8 weeks of treatment, an additional 8-week course of pantoprazole sodium for delayed-release oral suspension may be considered. ** Dosage regimens should be adjusted to individual patient needs and should continue for as long as clinically indicated. Doses up to 240 mg daily have been administered. *** Controlled studies did not extend beyond 12 monthsfor table footer text type here! Indication Dose Frequency Short-Term Treatment of Erosive Esophagitis Associated With GERD Adults 40 mg Once daily for up to 8 weeks* Children (5 years and older) ≥ 15 kg to < 40 kg 20 mg Once daily for up to 8 weeks ≥ 40 kg 40 mg Maintenance of Healing of Erosive Esophagitis Adults 40 mg Once daily*** Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome Adults 40 mg Twice daily** 2.2 Administration Instructions Directions for method of administration are presented in Table 2. Table 2: Administration Instructions * Do not split, chew, or crush pantoprazole sodium for delayed-release oral suspension. Formulation Route Instructions* For Delayed-Release Oral Suspension Oral Administered in 1 teaspoonful of applesauce or apple juice approximately 30 minutes prior to a meal For Delayed-Release Oral Suspension Nasogastric tube See instructions below Take a missed dose as soon as possible. If it is almost time for the next dose, skip the missed dose and take the next dose at the regular scheduled time. Do not take 2 doses at the same time. Pantoprazole Sodium for Delayed-Release Oral Suspension Administer pantoprazole sodium for delayed-release oral suspension approximately 30 minutes prior to a meal via oral administration in apple juice or applesauce or nasogastric tube in apple juice only. Because proper pH is necessary for stability, do not administer pantoprazole sodium for delayed-release oral suspension in liquids other than apple juice, or foods other than applesauce. Do not divide the 40 mg pantoprazole sodium for delayed-release oral suspension packet to create a 20 mg dosage for pediatric patients who are unable to take the tablet formulation. Pantoprazole Sodium for Delayed-Release Oral Suspension - Oral Administration in Applesauce Open packet. Sprinkle granules on one teaspoonful of applesauce. DO NOT USE OTHER FOODS OR CRUSH OR CHEW THE GRANULES. Take within 10 minutes of preparation. Take sips of water to make sure granules are washed down into the stomach. Repeat water sips as necessary. Pantoprazole Sodium for Delayed-Release Oral Suspension - Oral Administration in Apple Juice Open packet. Empty granules into a small cup or teaspoon containing one teaspoon of apple juice. Stir for 5 seconds (granules will not dissolve) and swallow immediately. To make sure that the entire dose is taken, rinse the container once or twice with apple juice to remove any remaining granules. Swallow immediately. Pantoprazole Sodium for Delayed-Release Oral Suspension - Nasogastric (NG) Tube or Gastrostomy Tube Administration For patients who have a nasogastric tube or gastrostomy tube in place, pantoprazole sodium for delayed-release oral suspension can be given as follows: Remove the plunger from the barrel of a 2 ounce (60 mL) catheter-tip syringe. Discard the plunger. Connect the catheter tip of the syringe to a 16 French (or larger) tube. Hold the syringe attached to the tubing as high as possible while giving pantoprazole sodium for delayed-release oral suspension to prevent any bending of the tubing. Empty the contents of the packet into the barrel of the syringe. Add 10 mL (2 teaspoonfuls) of apple juice and gently tap and/or shake the barrel of the syringe to help rinse the syringe and tube. Repeat at least twice more using the same amount of apple juice (10 mL or 2 teaspoonfuls) each time. No granules should remain in the syringe.
Indications And Usage
1 INDICATIONS AND USAGE Pantoprazole sodium for delayed-release oral suspension is indicated for: Pantoprazole sodium for delayed-release oral suspension is a proton pump inhibitor (PPI) indicated for the following: Short-Term Treatment of Erosive Esophagitis Associated with Gastroesophageal Reflux Disease (GERD) ( 1.1 ) Maintenance of Healing of Erosive Esophagitis ( 1.2 ) Pathological Hypersecretory Conditions Including Zollinger-Ellison (ZE) Syndrome ( 1.3 ) 1.1 Short-Term Treatment of Erosive Esophagitis Associated With Gastroesophageal Reflux Disease (GERD) Pantoprazole sodium for delayed-release oral suspension is indicated in adults and pediatric patients five years of age and older for the short-term treatment (up to 8 weeks) in the healing and symptomatic relief of erosive esophagitis (EE). For those adult patients who have not healed after 8 weeks of treatment, an additional 8-week course of pantoprazole sodium for delayed-release oral suspension may be considered. Safety of treatment beyond 8 weeks in pediatric patients has not been established. 1.2 Maintenance of Healing of Erosive Esophagitis Pantoprazole sodium for delayed-release oral suspension is indicated for maintenance of healing of EE and reduction in relapse rates of daytime and nighttime heartburn symptoms in adult patients with GERD. Controlled studies did not extend beyond 12 months. 1.3 Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome Pantoprazole sodium for delayed-release oral suspension is indicated for the long-term treatment of pathological hypersecretory conditions, including Zollinger-Ellison (ZE) Syndrome.
Overdosage
10 OVERDOSAGE Experience in patients taking very high doses of pantoprazole (greater than 240 mg) is limited. Spontaneous post-marketing reports of overdose are generally within the known safety profile of pantoprazole. Pantoprazole is not removed by hemodialysis. In case of overdosage, treatment should be symptomatic and supportive. Single oral doses of pantoprazole at 709 mg/kg, 798 mg/kg, and 887 mg/kg were lethal to mice, rats, and dogs, respectively. The symptoms of acute toxicity were hypoactivity, ataxia, hunched sitting, limb-splay, lateral position, segregation, absence of ear reflex, and tremor. If overexposure to pantoprazole occurs, call your Poison Control Center at 1-800-222-1222 for current information on the management of poisoning or overdosage.
Adverse Reactions Table
Pantoprazole | Comparators | Placebo | |
(n=1473) | (n=345) | (n=82) | |
% | % | % | |
Headache | 12.2 | 12.8 | 8.5 |
Diarrhea | 8.8 | 9.6 | 4.9 |
Nausea | 7.0 | 5.2 | 9.8 |
Abdominal pain | 6.2 | 4.1 | 6.1 |
Vomiting | 4.3 | 3.5 | 2.4 |
Flatulence | 3.9 | 2.9 | 3.7 |
Dizziness | 3.0 | 2.9 | 1.2 |
Arthralgia | 2.8 | 1.4 | 1.2 |
Drug Interactions
7 DRUG INTERACTIONS Table 4 includes drugs with clinically important drug interactions and interaction with diagnostics when administered concomitantly with pantoprazole and instructions for preventing or managing them. Consult the labeling of concomitantly used drugs to obtain further information about interactions with PPIs. Table 4: Clinically Relevant Interactions Affecting Drugs Co-Administered with Pantoprazole and Interactions with Diagnostics Antiretrovirals Clinical Impact: The effect of PPIs on antiretroviral drugs is variable. The clinical importance and the mechanisms behind these interactions are not always known. Decreased exposure of some antiretroviral drugs (e.g., rilpivirine atazanavir, and nelfinavir) when used concomitantly with pantoprazole may reduce antiviral effect and promote the development of drug resistance. Increased exposure of other antiretroviral drugs (e.g., saquinavir) when used concomitantly with pantoprazole may increase toxicity of the antiretroviral drugs. There are other antiretroviral drugs which do not result in clinically relevant interactions with pantoprazole. Intervention: Rilpivirine-containing products: Concomitant use with pantoprazole is contraindicated [see Contraindications ( 4 )] . See prescribing information. Atazanavir: See prescribing information for atazanavir for dosing information. Nelfinavir: Avoid concomitant use with pantoprazole. See prescribing information for nelfinavir. Saquinavir: See the prescribing information for saquinavir and monitor for potential saquinavir toxicities. Other antiretrovirals: See prescribing information. Warfarin Clinical Impact: Increased INR and prothrombin time in patients receiving PPIs, including pantoprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. Intervention: Monitor INR and prothrombin time. Dose adjustment of warfarin may be needed to maintain target INR range. See prescribing information for warfarin. Clopidogrel Clinical Impact: Concomitant administration of pantoprazole and clopidogrel in healthy subjects had no clinically important effect on exposure to the active metabolite of clopidogrel or clopidogrel-induced platelet inhibition [see Clinical Pharmacology ( 12.3 )]. Intervention: No dose adjustment of clopidogrel is necessary when administered with an approved dose of pantoprazole sodium for delayed-release oral suspension. Methotrexate Clinical Impact: Concomitant use of PPIs with methotrexate (primarily at high dose) may elevate and prolong serum concentrations of methotrexate and/or its metabolite hydroxymethotrexate, possibly leading to methotrexate toxicities. No formal drug interaction studies of high-dose methotrexate with PPIs have been conducted [see Warnings and Precautions ( 5.13 )] . Intervention: A temporary withdrawal of pantoprazole may be considered in some patients receiving high-dose methotrexate. Drugs Dependent on Gastric pH for Absorption (e.g., iron salts, erlotinib, dasatinib, nilotinib, mycophenolate mofetil, ketoconazole/itraconazole) Clinical Impact: Pantoprazole can reduce the absorption of other drugs due to its effect on reducing intragastric acidity. Intervention: Mycophenolate mofetil (MMF): Co-administration of pantoprazole sodium in healthy subjects and in transplant patients receiving MMF has been reported to reduce the exposure to the active metabolite, mycophenolic acid (MPA), possibly due to a decrease in MMF solubility at an increased gastric pH [see Clinical Pharmacology ( 12.3 )] . The clinical relevance of reduced MPA exposure on organ rejection has not been established in transplant patients receiving pantoprazole and MMF. Use pantoprazole with caution in transplant patients receiving MMF. See the prescribing information for other drugs dependent on gastric pH for absorption. Interactions with Investigations of Neuroendocrine Tumors Clinical Impact: CgA levels increase secondary to PPI-induced decreases in gastric acidity. The increased CgA level may cause false positive results in diagnostic investigations for neuroendocrine tumors [see Warnings and Precautions ( 5.11 ), Clinical Pharmacology ( 12.2 )] . Intervention: Temporarily stop pantoprazole treatment at least 14 days before assessing CgA levels and consider repeating the test if initial CgA levels are high. If serial tests are performed (e.g. for monitoring), the same commercial laboratory should be used for testing, as reference ranges between tests may vary. False Positive Urine Tests for THC Clinical Impact: There have been reports of false positive urine screening tests for tetrahydrocannabinol (THC) in patients receiving PPIs [see Warnings and Precautions ( 5.12 )] . Intervention: An alternative confirmatory method should be considered to verify positive results. See full prescribing information for a list of clinically important drug interactions ( 7 )
Drug Interactions Table
Antiretrovirals | |
Clinical Impact: | The effect of PPIs on antiretroviral drugs is variable. The clinical importance and the mechanisms behind these interactions are not always known. |
Intervention: | Rilpivirine-containing products: Concomitant use with pantoprazole is contraindicated [see Contraindications ( |
Warfarin | |
Clinical Impact: | Increased INR and prothrombin time in patients receiving PPIs, including pantoprazole, and warfarin concomitantly. Increases in INR and prothrombin time may lead to abnormal bleeding and even death. |
Intervention: | Monitor INR and prothrombin time. Dose adjustment of warfarin may be needed to maintain target INR range. See prescribing information for warfarin. |
Clopidogrel | |
Clinical Impact: | Concomitant administration of pantoprazole and clopidogrel in healthy subjects had no clinically important effect on exposure to the active metabolite of clopidogrel or clopidogrel-induced platelet inhibition [see Clinical Pharmacology ( |
Intervention: | No dose adjustment of clopidogrel is necessary when administered with an approved dose of pantoprazole sodium for delayed-release oral suspension. |
Methotrexate | |
Clinical Impact: | Concomitant use of PPIs with methotrexate (primarily at high dose) may elevate and prolong serum concentrations of methotrexate and/or its metabolite hydroxymethotrexate, possibly leading to methotrexate toxicities. No formal drug interaction studies of high-dose methotrexate with PPIs have been conducted [see Warnings and Precautions ( |
Intervention: | A temporary withdrawal of pantoprazole may be considered in some patients receiving high-dose methotrexate. |
Drugs Dependent on Gastric pH for Absorption (e.g., iron salts, erlotinib, dasatinib, nilotinib, mycophenolate mofetil, ketoconazole/itraconazole) | |
Clinical Impact: | Pantoprazole can reduce the absorption of other drugs due to its effect on reducing intragastric acidity. |
Intervention: | Mycophenolate mofetil (MMF): Co-administration of pantoprazole sodium in healthy subjects and in transplant patients receiving MMF has been reported to reduce the exposure to the active metabolite, mycophenolic acid (MPA), possibly due to a decrease in MMF solubility at an increased gastric pH [see Clinical Pharmacology ( |
Interactions with Investigations of Neuroendocrine Tumors | |
Clinical Impact: | CgA levels increase secondary to PPI-induced decreases in gastric acidity. The increased CgA level may cause false positive results in diagnostic investigations for neuroendocrine tumors [see Warnings and Precautions ( |
Intervention: | Temporarily stop pantoprazole treatment at least 14 days before assessing CgA levels and consider repeating the test if initial CgA levels are high. If serial tests are performed (e.g. for monitoring), the same commercial laboratory should be used for testing, as reference ranges between tests may vary. |
False Positive Urine Tests for THC | |
Clinical Impact: | There have been reports of false positive urine screening tests for tetrahydrocannabinol (THC) in patients receiving PPIs [see Warnings and Precautions ( |
Intervention: | An alternative confirmatory method should be considered to verify positive results. |
Clinical Pharmacology
12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action Pantoprazole is a PPI that suppresses the final step in gastric acid production by covalently binding to the (H + , K + )-ATPase enzyme system at the secretory surface of the gastric parietal cell. This effect leads to inhibition of both basal and stimulated gastric acid secretion, irrespective of the stimulus. The binding to the (H + , K + )-ATPase results in a duration of antisecretory effect that persists longer than 24 hours for all doses tested (20 mg to 120 mg). 12.2 Pharmacodynamics Pantoprazole sodium for delayed-release oral suspension, 40 mg has been shown to be comparable to pantoprazole sodium delayed-release tablets in suppressing pentagastrin-stimulated MAO in patients (n = 49) with GERD and a history of EE. In this multicenter, pharmacodynamic crossover study, a 40 mg oral dose of pantoprazole sodium for delayed-release oral suspension administered in a teaspoonful of applesauce was compared with a 40 mg oral dose of pantoprazole sodium delayed-release tablets after administration of each formulation once daily for 7 days. Both medications were administered thirty minutes before breakfast. Pentagastrin-stimulated (MAO) was assessed from hour 23 to 24 at steady state. Antisecretory Activity Under maximal acid stimulatory conditions using pentagastrin, a dose-dependent decrease in gastric acid output occurs after a single dose of oral (20 mg to 80 mg) or a single dose of intravenous (20 mg to 120 mg) pantoprazole in healthy subjects. Pantoprazole given once daily results in increasing inhibition of gastric acid secretion. Following the initial oral dose of 40 mg pantoprazole, a 51% mean inhibition was achieved by 2.5 hours. With once-a-day dosing for 7 days, the mean inhibition was increased to 85%. Pantoprazole suppressed acid secretion in excess of 95% in half of the subjects. Acid secretion had returned to normal within a week after the last dose of pantoprazole; there was no evidence of rebound hypersecretion. In a series of dose-response studies, pantoprazole, at oral doses ranging from 20 mg to 120 mg, caused dose-related increases in median basal gastric pH and in the percent of time gastric pH was greater than 3 and greater than 4. Treatment with 40 mg of pantoprazole produced significantly greater increases in gastric pH than the 20 mg dose. Doses higher than 40 mg (60, 80, 120 mg) did not result in further significant increases in median gastric pH. The effects of pantoprazole on median pH from one double-blind crossover study are shown in Table 5. Table 5: Effect of Single Daily Doses of Oral Pantoprazole on Intragastric pH * Significantly different from placebo # Significantly different from 20 mg –––––––––—––––––Median pH on day 7—–––––– Time Placebo 20 mg 40 mg 80 mg 8 a.m. - 8 a.m. (24 hours) 1.3 2.9* 3.8*# 3.9*# 8 a.m. - 10 p.m. (Daytime) 1.6 3.2* 4.4*# 4.8*# 10 p.m. - 8 a.m. (Nighttime) 1.2 2.1* 3.0* 2.6* Serum Gastrin Effects Fasting serum gastrin levels were assessed in two double-blind studies of the acute healing of EE in which 682 patients with gastroesophageal reflux disease (GERD) received 10, 20, or 40 mg of pantoprazole for up to 8 weeks. At 4 weeks of treatment there was an increase in mean gastrin levels of 7%, 35%, and 72% over pretreatment values in the 10, 20, and 40 mg treatment groups, respectively. A similar increase in serum gastrin levels was noted at the 8-week visit with mean increases of 3%, 26%, and 84% for the three pantoprazole dose groups. Median serum gastrin levels remained within normal limits during maintenance therapy with pantoprazole sodium delayed-release tablets. In long-term international studies involving over 800 patients, a 2- to 3-fold mean increase from the pretreatment fasting serum gastrin level was observed in the initial months of treatment with pantoprazole at doses of 40 mg per day during GERD maintenance studies and 40 mg or higher per day in patients with refractory GERD. Fasting serum gastrin levels generally remained at approximately 2 times to 3 times baseline for up to 4 years of periodic follow-up in clinical trials. Following short-term treatment with pantoprazole, elevated gastrin levels return to normal by at least 3 months. Enterochromaffin-Like (ECL) Cell Effects In 39 patients treated with oral pantoprazole 40 mg to 240 mg daily (majority receiving 40 mg to 80 mg) for up to 5 years, there was a moderate increase in ECL-cell density, starting after the first year of use, which appeared to plateau after 4 years. In a nonclinical study in Sprague-Dawley rats, lifetime exposure (24 months) to pantoprazole at doses of 0.5 mg/kg/day to 200 mg/kg/day resulted in dose-related increases in gastric ECL-cell proliferation and gastric neuroendocrine (NE)-cell tumors. Gastric NE-cell tumors in rats may result from chronic elevation of serum gastrin concentrations. The high density of ECL cells in the rat stomach makes this species highly susceptible to the proliferative effects of elevated gastrin concentrations produced by PPIs. However, there were no observed elevations in serum gastrin following the administration of pantoprazole at a dose of 0.5 mg/kg/day. In a separate study, a gastric NE-cell tumor without concomitant ECL-cell proliferative changes was observed in 1 female rat following 12 months of dosing with pantoprazole at 5 mg/kg/day and a 9 month off-dose recovery [see Nonclinical Toxicology ( 13.1 )] . Endocrine Effects In a clinical pharmacology study, pantoprazole 40 mg given once daily for 2 weeks had no effect on the levels of the following hormones: cortisol, testosterone, triiodothyronine (T 3 ), thyroxine (T 4 ), thyroid-stimulating hormone (TSH), thyronine-binding protein, parathyroid hormone, insulin, glucagon, renin, aldosterone, follicle-stimulating hormone, luteinizing hormone, prolactin, and growth hormone. In a 1-year study of GERD patients treated with pantoprazole 40 mg or 20 mg, there were no changes from baseline in overall levels of T 3 , T 4 , and TSH. 12.3 Pharmacokinetics Pantoprazole sodium delayed-release tablets are prepared as enteric-coated tablets so that absorption of pantoprazole begins only after the tablet leaves the stomach. Peak serum concentration (C max ) and area under the serum concentration time curve (AUC) increase in a manner proportional to oral and intravenous doses from 10 mg to 80 mg. Pantoprazole does not accumulate, and its pharmacokinetics are unaltered with multiple daily dosing. Following oral or intravenous administration, the serum concentration of pantoprazole declines biexponentially, with a terminal elimination half-life of approximately one hour. In extensive metabolizers with normal liver function receiving an oral dose of the enteric-coated 40 mg pantoprazole tablet, the peak concentration (C max ) is 2.5 mcg/mL; the time to reach the peak concentration (t max ) is 2.5 h, and the mean total area under the plasma concentration versus time curve (AUC) is 4.8 mcg•h/mL (range 1.4 to 13.3 mcg•h/mL). Following intravenous administration of pantoprazole to extensive metabolizers, its total clearance is 7.6 L/h to 14.0 L/h, and its apparent volume of distribution is 11.0 L to 23.6 L. A single oral dose of pantoprazole sodium for delayed-release oral suspension, 40 mg, was shown to be bioequivalent when administered to healthy subjects (N = 22) as granules sprinkled over a teaspoonful of applesauce, as granules mixed with apple juice, or mixed with apple juice followed by administration through a nasogastric tube. The plasma pharmacokinetic parameters from a crossover study in healthy subjects are summarized in Table 6. Table 6: Pharmacokinetics Parameters (mean ± SD) of Pantoprazole Sodium for Delayed-Release Oral Suspension at 40 mg a Median values are reported for T max . Pharmacokinetic Parameters Granules in Applesauce Granules in Apple Juice Granules in Nasogastric Tube AUC (mcg•hr/mL) 4.0 ± 1.5 4.0 ± 1.5 4.1 ± 1.7 Cmax (mcg/mL) 2.0 ± 0.7 1.9 ± 0.5 2.2 ± 0.7 Tmax (hr) a 2.0 2.5 2.0 Absorption After administration of a single or multiple oral 40 mg doses of pantoprazole sodium delayed-release tablets, the peak plasma concentration of pantoprazole was achieved in approximately 2.5 hours, and C max was 2.5 mcg/mL. Pantoprazole undergoes little first-pass metabolism, resulting in an absolute bioavailability of approximately 77%. Pantoprazole absorption is not affected by concomitant administration of antacids. Administration of pantoprazole sodium delayed-release tablets with food may delay its absorption up to 2 hours or longer; however, the C max and the extent of pantoprazole absorption (AUC) are not altered. Thus, pantoprazole sodium delayed-release tablets may be taken without regard to timing of meals. Administration of pantoprazole granules, 40 mg, with a high-fat meal delayed median time to peak plasma concentration by 2 hours. With a concomitant high-fat meal, the C max and AUC of pantoprazole granules, 40 mg, sprinkled on applesauce decreased by 51% and 29%, respectively. Thus, pantoprazole sodium for delayed-release oral suspension should be taken approximately 30 minutes before a meal. Distribution The apparent volume of distribution of pantoprazole is approximately 11 L to 23.6 L, distributing mainly in extracellular fluid. The serum protein binding of pantoprazole is about 98%, primarily to albumin. Elimination Metabolism Pantoprazole is extensively metabolized in the liver through the cytochrome P450 (CYP) system. Pantoprazole metabolism is independent of the route of administration (intravenous or oral). The main metabolic pathway is demethylation, by CYP2C19, with subsequent sulfation; other metabolic pathways include oxidation by CYP3A4. There is no evidence that any of the pantoprazole metabolites have significant pharmacologic activity. Excretion After a single oral or intravenous dose of 14C-labeled pantoprazole to healthy, normal metabolizer subjects, approximately 71% of the dose was excreted in the urine, with 18% excreted in the feces through biliary excretion. There was no renal excretion of unchanged pantoprazole. Specific Populations Geriatric Patients Only slight to moderate increases in the AUC (43%) and C max (26%) of pantoprazole were found in elderly subjects (64 years to 76 years of age) after repeated oral administration, compared with younger subjects [see Use in Specific Populations ( 8.5 )] . Pediatric Patients The pharmacokinetics of pantoprazole were studied in children less than 16 years of age in four randomized, open-label clinical trials in pediatric patients with presumed/proven GERD. A pediatric granule formulation was studied in children through 5 years of age, and pantoprazole sodium delayed-release tablets were studied in children older than 5 years. In a population PK analysis, total clearance increased with increasing bodyweight in a non-linear fashion. The total clearance also increased with increasing age only in children under 3 years of age. Neonate through 5 Years of Age [see Use in Specific Populations ( 8.4 )] Children and Adolescents 6 through 16 Years of Age The pharmacokinetics of pantoprazole sodium delayed-release tablets were evaluated in children ages 6 through 16 years with a clinical diagnosis of GERD. The PK parameters following a single oral dose of 20 mg or 40 mg of pantoprazole sodium for delayed-release tablets in children ages 6 through 16 years were highly variable (%CV ranges 40% to 80%). The geometric mean AUC estimated from population PK analysis after a 40 mg pantoprazole sodium delayed-release tablet in pediatric patients was about 39% and 10% higher respectively in 6 to 11 and 12 to 16 year-old children, compared to that of adults (Table 7). Table 7: PK Parameters in Children and Adolescents 6 through 16 years with GERD receiving 40 mg Pantoprazole Sodium Delayed-Release Tablets a Geometric mean values b Median values 6-11 years (n=12) 12-16 years (n=11) C max (mcg/mL) a 1.8 1.8 t max (h) b 2.0 2.0 AUC (mcg•h/mL) a 6.9 5.5 CL/F (L/h) b 6.6 6.8 Male and Female Patients There is a modest increase in pantoprazole AUC and C max in women compared to men. However, weight-normalized clearance values are similar in women and men. In pediatric patients ages 1 through 16 years there were no clinically relevant effects of gender on clearance of pantoprazole, as shown by population pharmacokinetic analysis. Patients with Renal Impairment In patients with severe renal impairment, pharmacokinetic parameters for pantoprazole were similar to those of healthy subjects. Patients with Hepatic Impairment In patients with mild to severe hepatic impairment (Child-Pugh A to C cirrhosis), maximum pantoprazole concentrations increased only slightly (1.5-fold) relative to healthy subjects. Although serum half-life values increased to 7 hours to 9 hours and AUC values increased by 5-fold to 7-fold in hepatic-impaired patients, these increases were no greater than those observed in CYP2C19 poor metabolizers, where no dosage adjustment is warranted. These pharmacokinetic changes in hepatic-impaired patients result in minimal drug accumulation following once-daily, multiple-dose administration. Doses higher than 40 mg/day have not been studied in hepatically impaired patients. Drug Interaction Studies Effect of Other Drugs on Pantoprazole Pantoprazole is metabolized mainly by CYP2C19 and to minor extents by CYPs 3A4, 2D6, and 2C9. In in vivo drug-drug interaction studies with CYP2C19 substrates (diazepam [also a CYP3A4 substrate] and phenytoin [also a CYP3A4 inducer] and clopidogrel), nifedipine, midazolam, and clarithromycin (CYP3A4 substrates), metoprolol (a CYP2D6 substrate), diclofenac, naproxen and piroxicam (CYP2C9 substrates), and theophylline (a CYP1A2 substrate) in healthy subjects, the pharmacokinetics of pantoprazole were not significantly altered. Effect of Pantoprazole on Other Drugs Clopidogrel Clopidogrel is metabolized to its active metabolite in part by CYP2C19. In a crossover clinical study, 66 healthy subjects were administered clopidogrel (300 mg loading dose followed by 75 mg per day) alone and with pantoprazole (80 mg at the same time as clopidogrel) for 5 days. On Day 5, the mean AUC of the active metabolite of clopidogrel was reduced by approximately 14% (geometric mean ratio was 86%, with 90% CI of 79 to 93%) when pantoprazole was coadministered with clopidogrel as compared to clopidogrel administered alone. Pharmacodynamic parameters were also measured and demonstrated that the change in inhibition of platelet aggregation (induced by 5 micromolar ADP) was correlated with the change in the exposure to clopidogrel active metabolite. The clinical significance of this finding is not clear. Mycophenolate Mofetil (MMF) Administration of pantoprazole 40 mg twice daily for 4 days and a single 1000 mg dose of MMF approximately one hour after the last dose of pantoprazole to 12 healthy subjects in a cross-over study resulted in a 57% reduction in the Cmax and 27% reduction in the AUC of MPA. Transplant patients receiving approximately 2000 mg per day of MMF (n=12) were compared to transplant patients receiving approximately the same dose of MMF and pantoprazole 40 mg per day (n=21). There was a 78% reduction in the C max and a 45% reduction in the AUC of MPA in patients receiving both pantoprazole and MMF [see Drug Interactions ( 7 )] . Other Drugs In vivo studies also suggest that pantoprazole does not significantly affect the kinetics of the following drugs (cisapride, theophylline, diazepam [and its active metabolite, desmethyldiazepam], phenytoin, metoprolol, nifedipine, carbamazepine, midazolam, clarithromycin, diclofenac, naproxen, piroxicam, and oral contraceptives [levonorgestrel/ethinyl estradiol]). In other in vivo studies, digoxin, ethanol, glyburide, antipyrine, caffeine, metronidazole, and amoxicillin had no clinically relevant interactions with pantoprazole. Although no significant drug-drug interactions have been observed in clinical studies, the potential for significant drug-drug interactions with more than once-daily dosing with high doses of pantoprazole has not been studied in poor metabolizers or individuals who are hepatically impaired. Antacids There was also no interaction with concomitantly administered antacids. 12.5 Pharmacogenomics CYP2C19 displays a known genetic polymorphism due to its deficiency in some subpopulations (e.g., approximately 3% of Caucasians and African-Americans and 17% to 23% of Asians are poor metabolizers). Although these subpopulations of pantoprazole poor metabolizers have elimination half-life values of 3.5 hours to 10 hours in adults, they still have minimal accumulation (23% or less) with once-daily dosing. For adult patients who are CYP2C19 poor metabolizers, no dosage adjustment is needed. Similar to adults, pediatric patients who have the poor metabolizer genotype of CYP2C19 (CYP2C19 *2/*2) exhibited greater than a 6-fold increase in AUC compared to pediatric extensive (CYP2C19 *1/*1) and intermediate (CYP2C19 *1/*x) metabolizers. Poor metabolizers exhibited approximately 10-fold lower apparent oral clearance compared to extensive metabolizers. For known pediatric poor metabolizers, a dose reduction should be considered.
Clinical Pharmacology Table
* Significantly different from placebo # Significantly different from 20 mg | ||||
–––––––––—––––––Median pH on day 7—–––––– | ||||
Time | Placebo | 20 mg | 40 mg | 80 mg |
8 a.m. - 8 a.m. (24 hours) | 1.3 | 2.9* | 3.8*# | 3.9*# |
8 a.m. - 10 p.m. (Daytime) | 1.6 | 3.2* | 4.4*# | 4.8*# |
10 p.m. - 8 a.m. (Nighttime) | 1.2 | 2.1* | 3.0* | 2.6* |
Mechanism Of Action
12.1 Mechanism of Action Pantoprazole is a PPI that suppresses the final step in gastric acid production by covalently binding to the (H + , K + )-ATPase enzyme system at the secretory surface of the gastric parietal cell. This effect leads to inhibition of both basal and stimulated gastric acid secretion, irrespective of the stimulus. The binding to the (H + , K + )-ATPase results in a duration of antisecretory effect that persists longer than 24 hours for all doses tested (20 mg to 120 mg).
Pharmacodynamics
12.2 Pharmacodynamics Pantoprazole sodium for delayed-release oral suspension, 40 mg has been shown to be comparable to pantoprazole sodium delayed-release tablets in suppressing pentagastrin-stimulated MAO in patients (n = 49) with GERD and a history of EE. In this multicenter, pharmacodynamic crossover study, a 40 mg oral dose of pantoprazole sodium for delayed-release oral suspension administered in a teaspoonful of applesauce was compared with a 40 mg oral dose of pantoprazole sodium delayed-release tablets after administration of each formulation once daily for 7 days. Both medications were administered thirty minutes before breakfast. Pentagastrin-stimulated (MAO) was assessed from hour 23 to 24 at steady state. Antisecretory Activity Under maximal acid stimulatory conditions using pentagastrin, a dose-dependent decrease in gastric acid output occurs after a single dose of oral (20 mg to 80 mg) or a single dose of intravenous (20 mg to 120 mg) pantoprazole in healthy subjects. Pantoprazole given once daily results in increasing inhibition of gastric acid secretion. Following the initial oral dose of 40 mg pantoprazole, a 51% mean inhibition was achieved by 2.5 hours. With once-a-day dosing for 7 days, the mean inhibition was increased to 85%. Pantoprazole suppressed acid secretion in excess of 95% in half of the subjects. Acid secretion had returned to normal within a week after the last dose of pantoprazole; there was no evidence of rebound hypersecretion. In a series of dose-response studies, pantoprazole, at oral doses ranging from 20 mg to 120 mg, caused dose-related increases in median basal gastric pH and in the percent of time gastric pH was greater than 3 and greater than 4. Treatment with 40 mg of pantoprazole produced significantly greater increases in gastric pH than the 20 mg dose. Doses higher than 40 mg (60, 80, 120 mg) did not result in further significant increases in median gastric pH. The effects of pantoprazole on median pH from one double-blind crossover study are shown in Table 5. Table 5: Effect of Single Daily Doses of Oral Pantoprazole on Intragastric pH * Significantly different from placebo # Significantly different from 20 mg –––––––––—––––––Median pH on day 7—–––––– Time Placebo 20 mg 40 mg 80 mg 8 a.m. - 8 a.m. (24 hours) 1.3 2.9* 3.8*# 3.9*# 8 a.m. - 10 p.m. (Daytime) 1.6 3.2* 4.4*# 4.8*# 10 p.m. - 8 a.m. (Nighttime) 1.2 2.1* 3.0* 2.6* Serum Gastrin Effects Fasting serum gastrin levels were assessed in two double-blind studies of the acute healing of EE in which 682 patients with gastroesophageal reflux disease (GERD) received 10, 20, or 40 mg of pantoprazole for up to 8 weeks. At 4 weeks of treatment there was an increase in mean gastrin levels of 7%, 35%, and 72% over pretreatment values in the 10, 20, and 40 mg treatment groups, respectively. A similar increase in serum gastrin levels was noted at the 8-week visit with mean increases of 3%, 26%, and 84% for the three pantoprazole dose groups. Median serum gastrin levels remained within normal limits during maintenance therapy with pantoprazole sodium delayed-release tablets. In long-term international studies involving over 800 patients, a 2- to 3-fold mean increase from the pretreatment fasting serum gastrin level was observed in the initial months of treatment with pantoprazole at doses of 40 mg per day during GERD maintenance studies and 40 mg or higher per day in patients with refractory GERD. Fasting serum gastrin levels generally remained at approximately 2 times to 3 times baseline for up to 4 years of periodic follow-up in clinical trials. Following short-term treatment with pantoprazole, elevated gastrin levels return to normal by at least 3 months. Enterochromaffin-Like (ECL) Cell Effects In 39 patients treated with oral pantoprazole 40 mg to 240 mg daily (majority receiving 40 mg to 80 mg) for up to 5 years, there was a moderate increase in ECL-cell density, starting after the first year of use, which appeared to plateau after 4 years. In a nonclinical study in Sprague-Dawley rats, lifetime exposure (24 months) to pantoprazole at doses of 0.5 mg/kg/day to 200 mg/kg/day resulted in dose-related increases in gastric ECL-cell proliferation and gastric neuroendocrine (NE)-cell tumors. Gastric NE-cell tumors in rats may result from chronic elevation of serum gastrin concentrations. The high density of ECL cells in the rat stomach makes this species highly susceptible to the proliferative effects of elevated gastrin concentrations produced by PPIs. However, there were no observed elevations in serum gastrin following the administration of pantoprazole at a dose of 0.5 mg/kg/day. In a separate study, a gastric NE-cell tumor without concomitant ECL-cell proliferative changes was observed in 1 female rat following 12 months of dosing with pantoprazole at 5 mg/kg/day and a 9 month off-dose recovery [see Nonclinical Toxicology ( 13.1 )] . Endocrine Effects In a clinical pharmacology study, pantoprazole 40 mg given once daily for 2 weeks had no effect on the levels of the following hormones: cortisol, testosterone, triiodothyronine (T 3 ), thyroxine (T 4 ), thyroid-stimulating hormone (TSH), thyronine-binding protein, parathyroid hormone, insulin, glucagon, renin, aldosterone, follicle-stimulating hormone, luteinizing hormone, prolactin, and growth hormone. In a 1-year study of GERD patients treated with pantoprazole 40 mg or 20 mg, there were no changes from baseline in overall levels of T 3 , T 4 , and TSH.
Pharmacodynamics Table
* Significantly different from placebo # Significantly different from 20 mg | ||||
–––––––––—––––––Median pH on day 7—–––––– | ||||
Time | Placebo | 20 mg | 40 mg | 80 mg |
8 a.m. - 8 a.m. (24 hours) | 1.3 | 2.9* | 3.8*# | 3.9*# |
8 a.m. - 10 p.m. (Daytime) | 1.6 | 3.2* | 4.4*# | 4.8*# |
10 p.m. - 8 a.m. (Nighttime) | 1.2 | 2.1* | 3.0* | 2.6* |
Pharmacokinetics
12.3 Pharmacokinetics Pantoprazole sodium delayed-release tablets are prepared as enteric-coated tablets so that absorption of pantoprazole begins only after the tablet leaves the stomach. Peak serum concentration (C max ) and area under the serum concentration time curve (AUC) increase in a manner proportional to oral and intravenous doses from 10 mg to 80 mg. Pantoprazole does not accumulate, and its pharmacokinetics are unaltered with multiple daily dosing. Following oral or intravenous administration, the serum concentration of pantoprazole declines biexponentially, with a terminal elimination half-life of approximately one hour. In extensive metabolizers with normal liver function receiving an oral dose of the enteric-coated 40 mg pantoprazole tablet, the peak concentration (C max ) is 2.5 mcg/mL; the time to reach the peak concentration (t max ) is 2.5 h, and the mean total area under the plasma concentration versus time curve (AUC) is 4.8 mcg•h/mL (range 1.4 to 13.3 mcg•h/mL). Following intravenous administration of pantoprazole to extensive metabolizers, its total clearance is 7.6 L/h to 14.0 L/h, and its apparent volume of distribution is 11.0 L to 23.6 L. A single oral dose of pantoprazole sodium for delayed-release oral suspension, 40 mg, was shown to be bioequivalent when administered to healthy subjects (N = 22) as granules sprinkled over a teaspoonful of applesauce, as granules mixed with apple juice, or mixed with apple juice followed by administration through a nasogastric tube. The plasma pharmacokinetic parameters from a crossover study in healthy subjects are summarized in Table 6. Table 6: Pharmacokinetics Parameters (mean ± SD) of Pantoprazole Sodium for Delayed-Release Oral Suspension at 40 mg a Median values are reported for T max . Pharmacokinetic Parameters Granules in Applesauce Granules in Apple Juice Granules in Nasogastric Tube AUC (mcg•hr/mL) 4.0 ± 1.5 4.0 ± 1.5 4.1 ± 1.7 Cmax (mcg/mL) 2.0 ± 0.7 1.9 ± 0.5 2.2 ± 0.7 Tmax (hr) a 2.0 2.5 2.0 Absorption After administration of a single or multiple oral 40 mg doses of pantoprazole sodium delayed-release tablets, the peak plasma concentration of pantoprazole was achieved in approximately 2.5 hours, and C max was 2.5 mcg/mL. Pantoprazole undergoes little first-pass metabolism, resulting in an absolute bioavailability of approximately 77%. Pantoprazole absorption is not affected by concomitant administration of antacids. Administration of pantoprazole sodium delayed-release tablets with food may delay its absorption up to 2 hours or longer; however, the C max and the extent of pantoprazole absorption (AUC) are not altered. Thus, pantoprazole sodium delayed-release tablets may be taken without regard to timing of meals. Administration of pantoprazole granules, 40 mg, with a high-fat meal delayed median time to peak plasma concentration by 2 hours. With a concomitant high-fat meal, the C max and AUC of pantoprazole granules, 40 mg, sprinkled on applesauce decreased by 51% and 29%, respectively. Thus, pantoprazole sodium for delayed-release oral suspension should be taken approximately 30 minutes before a meal. Distribution The apparent volume of distribution of pantoprazole is approximately 11 L to 23.6 L, distributing mainly in extracellular fluid. The serum protein binding of pantoprazole is about 98%, primarily to albumin. Elimination Metabolism Pantoprazole is extensively metabolized in the liver through the cytochrome P450 (CYP) system. Pantoprazole metabolism is independent of the route of administration (intravenous or oral). The main metabolic pathway is demethylation, by CYP2C19, with subsequent sulfation; other metabolic pathways include oxidation by CYP3A4. There is no evidence that any of the pantoprazole metabolites have significant pharmacologic activity. Excretion After a single oral or intravenous dose of 14C-labeled pantoprazole to healthy, normal metabolizer subjects, approximately 71% of the dose was excreted in the urine, with 18% excreted in the feces through biliary excretion. There was no renal excretion of unchanged pantoprazole. Specific Populations Geriatric Patients Only slight to moderate increases in the AUC (43%) and C max (26%) of pantoprazole were found in elderly subjects (64 years to 76 years of age) after repeated oral administration, compared with younger subjects [see Use in Specific Populations ( 8.5 )] . Pediatric Patients The pharmacokinetics of pantoprazole were studied in children less than 16 years of age in four randomized, open-label clinical trials in pediatric patients with presumed/proven GERD. A pediatric granule formulation was studied in children through 5 years of age, and pantoprazole sodium delayed-release tablets were studied in children older than 5 years. In a population PK analysis, total clearance increased with increasing bodyweight in a non-linear fashion. The total clearance also increased with increasing age only in children under 3 years of age. Neonate through 5 Years of Age [see Use in Specific Populations ( 8.4 )] Children and Adolescents 6 through 16 Years of Age The pharmacokinetics of pantoprazole sodium delayed-release tablets were evaluated in children ages 6 through 16 years with a clinical diagnosis of GERD. The PK parameters following a single oral dose of 20 mg or 40 mg of pantoprazole sodium for delayed-release tablets in children ages 6 through 16 years were highly variable (%CV ranges 40% to 80%). The geometric mean AUC estimated from population PK analysis after a 40 mg pantoprazole sodium delayed-release tablet in pediatric patients was about 39% and 10% higher respectively in 6 to 11 and 12 to 16 year-old children, compared to that of adults (Table 7). Table 7: PK Parameters in Children and Adolescents 6 through 16 years with GERD receiving 40 mg Pantoprazole Sodium Delayed-Release Tablets a Geometric mean values b Median values 6-11 years (n=12) 12-16 years (n=11) C max (mcg/mL) a 1.8 1.8 t max (h) b 2.0 2.0 AUC (mcg•h/mL) a 6.9 5.5 CL/F (L/h) b 6.6 6.8 Male and Female Patients There is a modest increase in pantoprazole AUC and C max in women compared to men. However, weight-normalized clearance values are similar in women and men. In pediatric patients ages 1 through 16 years there were no clinically relevant effects of gender on clearance of pantoprazole, as shown by population pharmacokinetic analysis. Patients with Renal Impairment In patients with severe renal impairment, pharmacokinetic parameters for pantoprazole were similar to those of healthy subjects. Patients with Hepatic Impairment In patients with mild to severe hepatic impairment (Child-Pugh A to C cirrhosis), maximum pantoprazole concentrations increased only slightly (1.5-fold) relative to healthy subjects. Although serum half-life values increased to 7 hours to 9 hours and AUC values increased by 5-fold to 7-fold in hepatic-impaired patients, these increases were no greater than those observed in CYP2C19 poor metabolizers, where no dosage adjustment is warranted. These pharmacokinetic changes in hepatic-impaired patients result in minimal drug accumulation following once-daily, multiple-dose administration. Doses higher than 40 mg/day have not been studied in hepatically impaired patients. Drug Interaction Studies Effect of Other Drugs on Pantoprazole Pantoprazole is metabolized mainly by CYP2C19 and to minor extents by CYPs 3A4, 2D6, and 2C9. In in vivo drug-drug interaction studies with CYP2C19 substrates (diazepam [also a CYP3A4 substrate] and phenytoin [also a CYP3A4 inducer] and clopidogrel), nifedipine, midazolam, and clarithromycin (CYP3A4 substrates), metoprolol (a CYP2D6 substrate), diclofenac, naproxen and piroxicam (CYP2C9 substrates), and theophylline (a CYP1A2 substrate) in healthy subjects, the pharmacokinetics of pantoprazole were not significantly altered. Effect of Pantoprazole on Other Drugs Clopidogrel Clopidogrel is metabolized to its active metabolite in part by CYP2C19. In a crossover clinical study, 66 healthy subjects were administered clopidogrel (300 mg loading dose followed by 75 mg per day) alone and with pantoprazole (80 mg at the same time as clopidogrel) for 5 days. On Day 5, the mean AUC of the active metabolite of clopidogrel was reduced by approximately 14% (geometric mean ratio was 86%, with 90% CI of 79 to 93%) when pantoprazole was coadministered with clopidogrel as compared to clopidogrel administered alone. Pharmacodynamic parameters were also measured and demonstrated that the change in inhibition of platelet aggregation (induced by 5 micromolar ADP) was correlated with the change in the exposure to clopidogrel active metabolite. The clinical significance of this finding is not clear. Mycophenolate Mofetil (MMF) Administration of pantoprazole 40 mg twice daily for 4 days and a single 1000 mg dose of MMF approximately one hour after the last dose of pantoprazole to 12 healthy subjects in a cross-over study resulted in a 57% reduction in the Cmax and 27% reduction in the AUC of MPA. Transplant patients receiving approximately 2000 mg per day of MMF (n=12) were compared to transplant patients receiving approximately the same dose of MMF and pantoprazole 40 mg per day (n=21). There was a 78% reduction in the C max and a 45% reduction in the AUC of MPA in patients receiving both pantoprazole and MMF [see Drug Interactions ( 7 )] . Other Drugs In vivo studies also suggest that pantoprazole does not significantly affect the kinetics of the following drugs (cisapride, theophylline, diazepam [and its active metabolite, desmethyldiazepam], phenytoin, metoprolol, nifedipine, carbamazepine, midazolam, clarithromycin, diclofenac, naproxen, piroxicam, and oral contraceptives [levonorgestrel/ethinyl estradiol]). In other in vivo studies, digoxin, ethanol, glyburide, antipyrine, caffeine, metronidazole, and amoxicillin had no clinically relevant interactions with pantoprazole. Although no significant drug-drug interactions have been observed in clinical studies, the potential for significant drug-drug interactions with more than once-daily dosing with high doses of pantoprazole has not been studied in poor metabolizers or individuals who are hepatically impaired. Antacids There was also no interaction with concomitantly administered antacids.
Pharmacokinetics Table
a Median values are reported for Tmax. | |||
Pharmacokinetic Parameters | Granules in Applesauce | Granules in Apple Juice | Granules in Nasogastric Tube |
AUC (mcg•hr/mL) | 4.0 ± 1.5 | 4.0 ± 1.5 | 4.1 ± 1.7 |
Cmax (mcg/mL) | 2.0 ± 0.7 | 1.9 ± 0.5 | 2.2 ± 0.7 |
Tmax (hr)a | 2.0 | 2.5 | 2.0 |
Effective Time
20220725
Version
2
Dosage And Administration Table
Indication | Dose | Frequency |
Short-Term Treatment of Erosive Esophagitis Associated With GERD ( | ||
Adults | 40 mg | Once Daily for up to 8 wks |
Children (5 years and older) | ||
≥15 kg to <40 kg | 20 mg | Once Daily for up to 8 wks |
≥ 40 kg | 40 mg | |
Maintenance of Healing of Erosive Esophagitis ( | ||
Adults | 40 mg | Once Daily* |
Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome ( | ||
Adults | 40 mg | Twice Daily |
Dosage Forms And Strengths
3 DOSAGE FORMS AND STRENGTHS 40 mg pantoprazole, yellow to brownish yellow color enteric-coated granules filled and sealed in a unit dose packet For Delayed-Release Oral Suspension: 40 mg pantoprazole ( 3 )
Spl Product Data Elements
Pantoprazole sodium Pantoprazole sodium PANTOPRAZOLE SODIUM PANTOPRAZOLE CROSPOVIDONE HYPROMELLOSE, UNSPECIFIED METHACRYLIC ACID AND ETHYL ACRYLATE COPOLYMER MICROCRYSTALLINE CELLULOSE POLYSORBATE 80 SODIUM CARBONATE SODIUM HYDROXIDE TALC TITANIUM DIOXIDE TRIETHYL CITRATE POLYETHYLENE GLYCOL 400 FERRIC OXIDE YELLOW brownish yellow
Carcinogenesis And Mutagenesis And Impairment Of Fertility
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 24-month carcinogenicity study, Sprague-Dawley rats were treated orally with pantoprazole doses of 0.5 mg/kg/day to 200 mg/kg/day, about 0.1 times to 40 times the exposure on a body surface area basis of a 50 kg person dosed with 40 mg/day. In the gastric fundus, treatment with 0.5 mg/kg/day to 200 mg/kg/day produced enterochromaffin-like (ECL) cell hyperplasia and benign and malignant neuroendocrine cell tumors in a dose-related manner. In the forestomach, treatment with 50 mg/kg/day and 200 mg/kg/day (about 10 times and 40 times the recommended human dose on a body surface area basis) produced benign squamous cell papillomas and malignant squamous cell carcinomas. Rare gastrointestinal tumors associated with pantoprazole treatment included an adenocarcinoma of the duodenum with 50 mg/kg/day and benign polyps and adenocarcinomas of the gastric fundus with 200 mg/kg/day. In the liver, treatment with 0.5 mg/kg/day to 200 mg/kg/day produced dose-related increases in the incidences of hepatocellular adenomas and carcinomas. In the thyroid gland, treatment with 200 mg/kg/day produced increased incidences of follicular cell adenomas and carcinomas for both male and female rats. In a 24-month carcinogenicity study, Fischer 344 rats were treated orally with doses of 5 mg/kg/day to 50 mg/kg/day of pantoprazole, approximately 1 time to 10 times the recommended human dose based on body surface area. In the gastric fundus, treatment with 5 mg/kg/day to 50 mg/kg/day produced enterochromaffin-like (ECL) cell hyperplasia and benign and malignant neuroendocrine cell tumors. Dose selection for this study may not have been adequate to comprehensively evaluate the carcinogenic potential of pantoprazole. In a 24-month carcinogenicity study, B6C3F1 mice were treated orally with doses of 5 mg/kg/day to 150 mg/kg/day of pantoprazole, 0.5 times to 15 times the recommended human dose based on body surface area. In the liver, treatment with 150 mg/kg/day produced increased incidences of hepatocellular adenomas and carcinomas in female mice. Treatment with 5 mg/kg/day to 150 mg/kg/day also produced gastric-fundic ECL cell hyperplasia. A 26-week p53 +/- transgenic mouse carcinogenicity study was not positive. Pantoprazole was positive in the in vitro human lymphocyte chromosomal aberration assays, in one of two mouse micronucleus tests for clastogenic effects, and in the in vitro Chinese hamster ovarian cell/HGPRT forward mutation assay for mutagenic effects. Equivocal results were observed in the in vivo rat liver DNA covalent binding assay. Pantoprazole was negative in the in vitro Ames mutation assay, the in vitro unscheduled DNA synthesis (UDS) assay with rat hepatocytes, the in vitro AS52/GPT mammalian cell-forward gene mutation assay, the in vitro thymidine kinase mutation test with mouse lymphoma L5178Y cells, and the in vivo rat bone marrow cell chromosomal aberration assay. There were no effects on fertility or reproductive performance when pantoprazole was given at oral doses up to 500 mg/kg/day in male rats (98 times the recommended human dose based on body surface area) and 450 mg/kg/day in female rats (88 times the recommended human dose based on body surface area).
Nonclinical Toxicology
13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility In a 24-month carcinogenicity study, Sprague-Dawley rats were treated orally with pantoprazole doses of 0.5 mg/kg/day to 200 mg/kg/day, about 0.1 times to 40 times the exposure on a body surface area basis of a 50 kg person dosed with 40 mg/day. In the gastric fundus, treatment with 0.5 mg/kg/day to 200 mg/kg/day produced enterochromaffin-like (ECL) cell hyperplasia and benign and malignant neuroendocrine cell tumors in a dose-related manner. In the forestomach, treatment with 50 mg/kg/day and 200 mg/kg/day (about 10 times and 40 times the recommended human dose on a body surface area basis) produced benign squamous cell papillomas and malignant squamous cell carcinomas. Rare gastrointestinal tumors associated with pantoprazole treatment included an adenocarcinoma of the duodenum with 50 mg/kg/day and benign polyps and adenocarcinomas of the gastric fundus with 200 mg/kg/day. In the liver, treatment with 0.5 mg/kg/day to 200 mg/kg/day produced dose-related increases in the incidences of hepatocellular adenomas and carcinomas. In the thyroid gland, treatment with 200 mg/kg/day produced increased incidences of follicular cell adenomas and carcinomas for both male and female rats. In a 24-month carcinogenicity study, Fischer 344 rats were treated orally with doses of 5 mg/kg/day to 50 mg/kg/day of pantoprazole, approximately 1 time to 10 times the recommended human dose based on body surface area. In the gastric fundus, treatment with 5 mg/kg/day to 50 mg/kg/day produced enterochromaffin-like (ECL) cell hyperplasia and benign and malignant neuroendocrine cell tumors. Dose selection for this study may not have been adequate to comprehensively evaluate the carcinogenic potential of pantoprazole. In a 24-month carcinogenicity study, B6C3F1 mice were treated orally with doses of 5 mg/kg/day to 150 mg/kg/day of pantoprazole, 0.5 times to 15 times the recommended human dose based on body surface area. In the liver, treatment with 150 mg/kg/day produced increased incidences of hepatocellular adenomas and carcinomas in female mice. Treatment with 5 mg/kg/day to 150 mg/kg/day also produced gastric-fundic ECL cell hyperplasia. A 26-week p53 +/- transgenic mouse carcinogenicity study was not positive. Pantoprazole was positive in the in vitro human lymphocyte chromosomal aberration assays, in one of two mouse micronucleus tests for clastogenic effects, and in the in vitro Chinese hamster ovarian cell/HGPRT forward mutation assay for mutagenic effects. Equivocal results were observed in the in vivo rat liver DNA covalent binding assay. Pantoprazole was negative in the in vitro Ames mutation assay, the in vitro unscheduled DNA synthesis (UDS) assay with rat hepatocytes, the in vitro AS52/GPT mammalian cell-forward gene mutation assay, the in vitro thymidine kinase mutation test with mouse lymphoma L5178Y cells, and the in vivo rat bone marrow cell chromosomal aberration assay. There were no effects on fertility or reproductive performance when pantoprazole was given at oral doses up to 500 mg/kg/day in male rats (98 times the recommended human dose based on body surface area) and 450 mg/kg/day in female rats (88 times the recommended human dose based on body surface area).
Application Number
ANDA217416
Brand Name
Pantoprazole sodium
Generic Name
Pantoprazole sodium
Product Ndc
27241-256
Product Type
HUMAN PRESCRIPTION DRUG
Route
ORAL
Package Label Principal Display Panel
PACKAGE LABEL.PRINCIPAL DISPLAY PANEL NDC-27241-256-11 Pantoprazole Sodium For Delayed-Release Oral Suspension* 40 mg *suspension in apple juice or applesauce only Rx Only ajanta NDC-27241-256-38 30 Packets Pantoprazole Sodium For Delayed-Release Oral Suspension* 40 mg *suspension in apple juice or applesauce only PHARMACIST: Dispense the accompanying Medication Guide to each patient Each packet contains 40 mg of pantoprazole equivalent to 45.1 mg of pantoprazole sodium. Rx Only ajanta pouch carton
Recent Major Changes
Warnings and Precautions, Severe Cutaneous Adverse Reactions ( 5.5 ) 03/2022 Hypomagnesemia and Mineral Metabolism ( 5.8 ) 03/2022
Information For Patients
17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use). Gastric Malignancy Advise patients to return to their healthcare provider if they have a suboptimal response or an early symptomatic relapse [see Warnings and Precautions ( 5.1 )] . Acute Tubulointerstitial Nephritis Advise patients to call their healthcare provider immediately if they experience signs and/or symptoms associated with acute tubulointerstitial nephritis [see Contraindications ( 4 ), Warnings and Precautions ( 5.2 )] . Clostridium difficile- Associated Diarrhea Advise patients to immediately call their healthcare provider if they experience diarrhea that does not improve [see Warnings and Precautions ( 5.3 )] . Bone Fracture Advise patients to report any fractures, especially of the hip, wrist or spine, to their healthcare provider [see Warnings and Precautions ( 5.4 )] . Severe Cutaneous Adverse Reactions Advise patients to discontinue pantoprazole sodium for delayed release oral suspension and immediately call their healthcare provider for further evaluation [see Warnings and Precautions ( 5.5 )]. Cutaneous and Systemic Lupus Erythematosus Advise patients to immediately call their healthcare provider for any new or worsening of symptoms associated with cutaneous or systemic lupus erythematosus [see Warnings and Precautions ( 5.6 )] . Cyanocobalamin (Vitamin B-12) Deficiency Advise patients to report any clinical symptoms that may be associated with cyancobalamin deficiency to their healthcare provider if they have been receiving pantoprazole for longer than 3 years [see Warnings and Precautions ( 5.7 )] . Hypomagnesemia and Mineral Metabolism Advise patients to report any clinical symptoms that may be associated with hypomagnesemia, hypocalcemia and/or hypokalemia to their healthcare provider, if they have been receiving pantoprazole sodium for delayed-release oral suspension for at least 3 months [see Warnings and Precautions ( 5.8 )] . Drug Interactions Instruct patients to inform their healthcare provider of any other medications they are currently taking, including rilpivirine-containing products [see Contraindications ( 4 )] digoxin [see Warnings and Precautions ( 5.8 )] and high dose methotrexate [see Warnings and Precautions ( 5.13 )] . Pregnancy Advise a pregnant woman of the potential risk to a fetus. Advise females of reproductive potential to inform their healthcare provider of a known or suspected pregnancy [see Use in Specific Populations ( 8.1 )] . Administration Do not split, crush, or chew pantoprazole sodium for delayed-release oral suspension. Pantoprazole sodium for delayed-release oral suspension packet is a fixed dose and cannot be divided to make a smaller dose. Take pantoprazole sodium for delayed-release oral suspension approximately 30 minutes before a meal. Administer pantoprazole sodium for delayed-release oral suspension in apple juice or applesauce, as described in the Instructions for Use. Do not administer in water, other liquids, or foods. For patients with a nasogastric (NG) or gastrostomy tube, pantoprazole sodium for delayed-release oral suspension can be administered with apple juice, as described in the Instructions for Use. Take a missed dose as soon as possible. If it is almost time for the next dose, skip the missed dose and take the next dose at the regular scheduled time. Do not take 2 doses at the same time. Marketed by: Ajanta Pharma USA Inc. Bridgewater, NJ 08807. Made in INDIA Revised: 07/2022
Spl Medguide
MEDICATION GUIDE Pantoprazole sodium (pan toe’ pra zole soe’ dee um) for delayed-release oral suspension What is the most important information I should know about pantoprazole sodium for delayed-release oral suspension? You should take pantoprazole sodium for delayed-release oral suspension exactly as prescribed, at the lowest dose possible and for the shortest time needed. Pantoprazole sodium for delayed-release oral suspension may help your acid-related symptoms, but you could still have serious stomach problems. Talk with your doctor. Pantoprazole sodium for delayed-release oral suspension can cause serious side effects, including: A type of kidney problem (acute tubulointerstitial nephritis). Some people who take proton pump inhibitor (PPI) medicines, including pantoprazole sodium for delayed-release oral suspension, may develop a kidney problem called acute tubulointerstitial nephritis that can happen at any time during treatment with pantoprazole sodium for delayed-release oral suspension. Call your doctor right away if you have a decrease in the amount that you urinate or if you have blood in your urine. Diarrhea caused by an infection ( Clostridium difficile ) in your intestines . Call your doctor right away if you have watery stools or stomach pain that does not go away. You may or may not have a fever. Bone fractures (hip, wrist, or spine) . Bone fractures in the hip, wrist, or spine may happen in people who take multiple daily doses of PPI medicines and for a long period of time (a year or longer). Tell your doctor if you have a bone fracture, especially in the hip, wrist, or spine. Certain types of lupus erythematosus. Lupus erythematosus is an autoimmune disorder (the body’s immune cells attack other cells or organs in the body). Some people who take PPI medicines, including pantoprazole sodium for delayed-release oral suspension, may develop certain types of lupus erythematosus or have worsening of the lupus they already have. Call your doctor right away if you have new or worsening joint pain or a rash on your cheeks or arms that gets worse in the sun. Low magnesium and other mineral levels in your body can happen in people who have taken pantoprazole sodium for delayed-release oral suspension for at least 3 months. Tell your doctor if you have symptoms of low magnesium levels, including seizures, dizziness, irregular heartbeat, jitteriness, muscle aches or weakness, and spasms of hands, feet or voice. Talk to your doctor about your risk of these serious side effects. Pantoprazole sodium for delayed-release oral suspension can have other serious side effects. See “What are the possible side effects of pantoprazole sodium for delayed-release oral suspension?” What is pantoprazole sodium for delayed-release oral suspension? A prescription medicine called a proton pump inhibitor (PPI) used to reduce the amount of acid in your stomach. In adults, pantoprazole sodium for delayed-release oral suspension is used for: up to 8 weeks for the healing and symptom relief of acid-related damage to the lining of the esophagus (called erosive esophagitis or EE). Your doctor may prescribe another 8 weeks of pantoprazole sodium for delayed-release oral suspension in patients whose EE does not heal. maintaining healing of EE and to help prevent the return of heartburn symptoms caused by GERD. It is not known if pantoprazole sodium for delayed-release oral suspension is safe and effective when used for longer than 12 months for this purpose. the long-term treatment of conditions where your stomach makes too much acid. This includes a rare condition called Zollinger-Ellison Syndrome. In children 5 years of age and older , pantoprazole sodium for delayed-release oral suspension is used for: up to 8 weeks for the healing and symptom relief of EE. It is not known if pantoprazole sodium for delayed-release oral suspension is safe if used longer than 8 weeks in children. Pantoprazole sodium for delayed-release oral suspension is not for use in children under 5 years of age. It is not known if pantoprazole sodium for delayed-release oral suspension is safe and effective in children for treatment other than EE. Do not take pantoprazole sodium for delayed-release oral suspension if you are: allergic to pantoprazole sodium, any other PPI medicine, or any of the ingredients in pantoprazole sodium for delayed-release oral suspension. See the end of this Medication Guide for a complete list of ingredients. taking a medicine that contains rilpivirine (EDURANT, COMPLERA, ODEFSEY, JULUCA) used to treat HIV-1 (Human Immunodeficiency Virus). Before taking pantoprazole sodium for delayed-release oral suspension, tell your doctor about all of your medical conditions, including if you: have low magnesium levels, low calcium levels and low potassium levels in your blood. are pregnant or plan to become pregnant. Pantoprazole sodium for delayed-release oral suspension may harm your unborn baby. Tell your doctor if you become pregnant or think you may be pregnant during treatment with pantoprazole sodium for delayed-release oral suspension. are breastfeeding or plan to breastfeed. Pantoprazole sodium for delayed-release oral suspension can pass into your breast milk. Talk with your doctor about the best way to feed your baby if you take pantoprazole sodium for delayed-release oral suspension. Tell your doctor about all the medicines you take, including prescription and over-the-counter medicines, vitamins and herbal supplements. Especially tell your doctor if you take methotrexate (Otrexup, Rasuvo, Trexall, XATMEP), digoxin (LANOXIN), or a water pill (diuretic). How should I take pantoprazole sodium for delayed-release oral suspension? Take pantoprazole sodium for delayed-release oral suspension exactly as prescribed by your doctor. Pantoprazole sodium for delayed-release oral suspension: Do not split, chew, or crush pantoprazole sodium for delayed-release oral suspension. Take pantoprazole sodium for delayed-release oral suspension about 30 minutes before a meal. Pantoprazole sodium for delayed-release oral suspension should only be given by mouth mixed in apple juice or applesauce or through a nasogastric (NG) tube or gastrostomy tube mixed in apple juice. Do not mix pantoprazole sodium for delayed-release oral suspension in liquids other than apple juice or foods other than applesauce. Do not divide a packet of pantoprazole sodium for delayed-release oral suspension to make a smaller dose. See the “Instructions for Use” at the end of this Medication Guide for instructions on how to mix and take pantoprazole sodium for delayed-release oral suspension by mouth in applesauce or apple juice or how to mix and give the suspension through an NG tube or gastrostomy tube mixed in apple juice. If you miss a dose of pantoprazole sodium for delayed-release oral suspension, take it as soon as possible. If it is almost time for your next dose, do not take the missed dose. Take the next dose at your regular time. Do not take 2 doses at the same time. If you take too much pantoprazole sodium for delayed-release oral suspension, call your doctor or your poison control center at 1-800-222-1222 right away or go to the nearest emergency room. What are the possible side effects of pantoprazole sodium for delayed-release oral suspension? Pantoprazole sodium for delayed-release oral suspension can cause serious side effects, including: See “What is the most important information I should know about pantoprazole sodium for delayed-release oral suspension?” Low vitamin B-12 levels in your body can happen in people who have taken pantoprazole sodium for delayed-release oral suspension for a long time (more than 3 years). Tell your doctor if you have symptoms of low vitamin B-12 levels, including shortness of breath, lightheadedness, irregular heartbeat, muscle weakness, pale skin, feeling tired, mood changes, and tingling or numbness in the arms and legs. Stomach growths (fundic gland polyps). People who take PPI medicines for a long time have an increased risk of developing a certain type of stomach growths called fundic gland polyps, especially after taking PPI medicines for more than 1 year. Severe skin reactions. Pantoprazole sodium for delayed-release oral suspension can cause rare but severe skin reactions that may affect any part of your body. These serious skin reactions may need to be treated in a hospital and may be life threatening: Skin rash which may have blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet). You may also have fever, chills, body aches, shortness of breath, or enlarged lymph nodes. Stop taking pantoprazole sodium for delayed-release oral suspension and call your doctor right away. These symptoms may be the first sign of a severe skin reaction. The most common side effects of pantoprazole sodium for delayed-release oral suspension in adults include: headache, diarrhea, nausea, stomach-area (abdominal) pain, vomiting, gas, dizziness, and joint pain. The most common side effects of pantoprazole sodium for delayed-release oral suspension in children include: upper respiratory infection, headache, fever, diarrhea, vomiting, rash, and stomach-area (abdominal) pain. These are not all the possible side effects of pantoprazole sodium for delayed-release oral suspension. Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088. How should I store pantoprazole sodium for delayed-release oral suspension? Store pantoprazole sodium for delayed-release oral suspension at room temperature between 68°F to 77°F (20°C to 25°C). Keep pantoprazole sodium for delayed-release oral suspension and all medicines out of the reach of children. General information about the safe and effective use of pantoprazole sodium for delayed-release oral suspension. Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use pantoprazole sodium for delayed-release oral suspension for a condition for which it was not prescribed. Do not give pantoprazole sodium for delayed-release oral suspension to other people, even if they have the same symptoms that you have. It may harm them. You can ask your doctor or pharmacist for information about pantoprazole sodium for delayed-release oral suspension that is written for health professionals. What are the ingredients in pantoprazole sodium for delayed-release oral suspension? Active ingredient: pantoprazole sodium sesquihydrate Inactive ingredients in pantoprazole sodium for delayed-release oral suspension: crospovidone, hypromellose, methacrylic acid and ethyl acrylate copolymer dispersion, microcrystalline cellulose, polysorbate 80, sodium carbonate, sodium hydroxide, talc, titanium dioxide, triethyl citrate, polyethylene glycol and yellow ferric oxide. This Medication Guide has been approved by the U.S. Food and Drug Administration. #All trademarks are the properties of their respective owners. Marketed by: Ajanta Pharma USA Inc. Bridgewater, NJ 08807. Made in INDIA Revised: 07/2022 Instructions for Use Pantoprazole sodium (pan toe’ pra zole soe’ dee um) for delayed-release oral suspension Pantoprazole sodium for delayed-release oral suspension: Important information: Do not split, chew, or crush pantoprazole sodium for delayed-release oral suspension. Take pantoprazole sodium for delayed-release oral suspension for oral suspension about 30 minutes before a meal. Pantoprazole sodium for delayed-release oral suspension should only be taken with applesauce or apple juice. should not be mixed in water or other liquids, or other foods. packet should not be divided to make a smaller dose. Taking pantoprazole sodium for delayed-release oral suspension with applesauce: Open the packet of pantoprazole sodium for delayed-release oral suspension. Sprinkle all of the granules in the packet on 1 teaspoon of applesauce. Swallow the granules and applesauce within 10 minutes of putting the granules on the teaspoon of applesauce. Take sips of water to make sure the granules are washed down into the stomach. Take more sips of water as needed. Taking pantoprazole sodium for delayed-release oral suspension with apple juice: Open the packet of pantoprazole sodium for delayed-release oral suspension. Empty all of the granules in the packet into a small cup that contains 1 teaspoon of apple juice. Stir the granules-apple juice mixture for 5 seconds. The granules will not break up. Swallow the mixture right away. To make sure that the entire dose is taken, add more apple juice to the cup, stir and swallow the apple juice right away. Repeat step 5 if there are granules left in the cup. Giving pantoprazole sodium for delayed-release oral suspension through a nasogastric (NG) tube or gastrostomy tube: Pantoprazole sodium for delayed-release oral suspension may be given through an NG tube or gastrostomy tube that is size 16 French or larger . Do not give pantoprazole sodium for delayed-release oral suspension through an NG tube or gastrostomy tube smaller than size 16 French. Mix pantoprazole sodium for delayed-release oral suspension only in apple juice when giving through an NG tube or gastrostomy tube. Remove the plunger from a 60 mL (2 ounce) catheter-tip syringe. Throw away the plunger. Connect the tip of the catheter-tip syringe to the NG tube or gastrostomy tube. Hold the syringe attached to the NG tube or gastrostomy tube as high as possible while giving pantoprazole sodium for delayed-release oral suspension to prevent the tubing from bending. Open the packet of pantoprazole sodium for delayed-release oral suspension. Empty all the granules in the packet into the catheter-tip syringe. Add 10 mL (2 teaspoons) of apple juice into the catheter-tip syringe and gently tap or shake the syringe to help empty the syringe. Repeat step 6 at least 2 more times until there are no granules left in the catheter-tip syringe. How should I store pantoprazole sodium for delayed-release oral suspension? Store pantoprazole sodium for delayed-release oral suspension at room temperature between 68°F to 77°F (20°C to 25°C). Keep pantoprazole sodium for delayed-release oral suspension and all medicines out of the reach of children. This Instructions for Use has been approved by the U.S. Food and Drug Administration. #All trademarks are the properties of their respective owners. Marketed by: Ajanta Pharma USA Inc. Bridgewater, NJ 08807. Made in INDIA Revised: 07/2022
Spl Medguide Table
MEDICATION GUIDE Pantoprazole sodium (pan toe’ pra zole soe’ dee um) for delayed-release oral suspension |
What is the most important information I should know about pantoprazole sodium for delayed-release oral suspension? You should take pantoprazole sodium for delayed-release oral suspension exactly as prescribed, at the lowest dose possible and for the shortest time needed. Pantoprazole sodium for delayed-release oral suspension may help your acid-related symptoms, but you could still have serious stomach problems. Talk with your doctor. Pantoprazole sodium for delayed-release oral suspension can cause serious side effects, including: |
What is pantoprazole sodium for delayed-release oral suspension? A prescription medicine called a proton pump inhibitor (PPI) used to reduce the amount of acid in your stomach. In adults, pantoprazole sodium for delayed-release oral suspension is used for: |
Before taking pantoprazole sodium for delayed-release oral suspension, tell your doctor about all of your medical conditions, including if you: |
How should I take pantoprazole sodium for delayed-release oral suspension? |
What are the possible side effects of pantoprazole sodium for delayed-release oral suspension? Pantoprazole sodium for delayed-release oral suspension can cause serious side effects, including: |
How should I store pantoprazole sodium for delayed-release oral suspension? Store pantoprazole sodium for delayed-release oral suspension at room temperature between 68°F to 77°F (20°C to 25°C). Keep pantoprazole sodium for delayed-release oral suspension and all medicines out of the reach of children. |
General information about the safe and effective use of pantoprazole sodium for delayed-release oral suspension. Medicines are sometimes prescribed for purposes other than those listed in a Medication Guide. Do not use pantoprazole sodium for delayed-release oral suspension for a condition for which it was not prescribed. Do not give pantoprazole sodium for delayed-release oral suspension to other people, even if they have the same symptoms that you have. It may harm them. You can ask your doctor or pharmacist for information about pantoprazole sodium for delayed-release oral suspension that is written for health professionals. |
What are the ingredients in pantoprazole sodium for delayed-release oral suspension? Active ingredient: pantoprazole sodium sesquihydrate Inactive ingredients in pantoprazole sodium for delayed-release oral suspension: crospovidone, hypromellose, methacrylic acid and ethyl acrylate copolymer dispersion, microcrystalline cellulose, polysorbate 80, sodium carbonate, sodium hydroxide, talc, titanium dioxide, triethyl citrate, polyethylene glycol and yellow ferric oxide. |
Clinical Studies
14 CLINICAL STUDIES Pantoprazole sodium delayed-release tablets were used in the following clinical trials. 14.1 Erosive Esophagitis (EE) Associated with Gastroesophageal Reflux Disease (GERD) Adult Patients A US multicenter, double-blind, placebo-controlled study of pantoprazole 10 mg, 20 mg, or 40 mg once daily was conducted in 603 patients with reflux symptoms and endoscopically diagnosed EE of grade 2 or above (Hetzel-Dent scale). In this study, approximately 25% of enrolled patients had severe EE of grade 3, and 10% had grade 4. The percentages of patients healed (per protocol, n = 541) in this study are shown in Table 8. Table 8: Erosive Esophagitis Healing Rates (Per Protocol) + (p less than 0.001) pantoprazole versus placebo * (p less than 0.05) versus 10 mg or 20 mg pantoprazole # (p less than 0.05) versus 10 mg pantoprazole –––––––––––––––PANTOPRAZOLE––––––––––––––– Placebo Week 10 mg daily (n = 153) 20 mg daily (n = 158) 40 mg daily (n = 162) (n = 68) 4 45.6% + 58.4% +# 75.0% +* 14.3% 8 66.0% + 83.5% +# 92.6% +* 39.7% In this study, all pantoprazole treatment groups had significantly greater healing rates than the placebo group. This was true regardless of H. pylori status for the 40 mg and 20 mg pantoprazole treatment groups. The 40 mg dose of pantoprazole resulted in healing rates significantly greater than those found with either the 20 mg or 10 mg dose. A significantly greater proportion of patients taking pantoprazole 40 mg experienced complete relief of daytime and nighttime heartburn and the absence of regurgitation, starting from the first day of treatment, compared with placebo. Patients taking pantoprazole consumed significantly fewer antacid tablets per day than those taking placebo. Pantoprazole 40 mg and 20 mg once daily were also compared with nizatidine 150 mg twice daily in a US multicenter, double-blind study of 243 patients with reflux symptoms and endoscopically diagnosed EE of grade 2 or above. The percentages of patients healed (per protocol, n = 212) are shown in Table 9. Table 9: Erosive Esophagitis Healing Rates (Per Protocol) + (p less than 0.001) pantoprazole versus nizatidine –––––––––––––––––PANTOPRAZOLE––––––––––––––––– Nizatidine Week 20 mg daily (n = 72) 40 mg daily (n = 70) 150 mg twice daily (n = 70) 4 61.4% + 64.0% + 22.2% 8 79.2% + 82.9% + 41.4% Once-daily treatment with pantoprazole 40 mg or 20 mg resulted in significantly superior rates of healing at both 4 and 8 weeks compared with twice-daily treatment with 150 mg of nizatidine. For the 40 mg treatment group, significantly greater healing rates compared to nizatidine were achieved regardless of the H. pylori status. A significantly greater proportion of the patients in the pantoprazole treatment groups experienced complete relief of nighttime heartburn and regurgitation, starting on the first day and of daytime heartburn on the second day, compared with those taking nizatidine 150 mg twice daily. Patients taking pantoprazole consumed significantly fewer antacid tablets per day than those taking nizatidine. Pediatric Patients Ages 5 Years through 16 Years The efficacy of pantoprazole in the treatment of EE associated with GERD in pediatric patients ages 5 years through 16 years is extrapolated from adequate and well-conducted trials in adults, as the pathophysiology is thought to be the same. Four pediatric patients with endoscopically diagnosed EE were studied in multicenter, randomized, double-blind, parallel-treatment trials. Children with endoscopically diagnosed EE (defined as an endoscopic Hetzel-Dent score greater than or equal to 2) were treated once daily for 8 weeks with one of two dose levels of pantoprazole (20 mg or 40 mg). All 4 patients with EE were healed (Hetzel-Dent score of 0 or 1) at 8 weeks. 14.2 Long-Term Maintenance of Healing of Erosive Esophagitis Two independent, multicenter, randomized, double-blind, comparator-controlled trials of identical design were conducted in adult GERD patients with endoscopically confirmed healed EE to demonstrate efficacy of pantoprazole in long-term maintenance of healing. The two US studies enrolled 386 and 404 patients, respectively, to receive either 10 mg, 20 mg, or 40 mg of pantoprazole sodium delayed-release tablets once daily or 150 mg of ranitidine twice daily. As demonstrated in Table 10, pantoprazole 40 mg and 20 mg were significantly superior to ranitidine at every timepoint with respect to the maintenance of healing. In addition, pantoprazole 40 mg was superior to all other treatments studied. Table 10: Long-Term Maintenance of Healing of Erosive Gastroesophageal Reflux Disease (GERD Maintenance): Percentage of Patients Who Remained Healed * (p less than 0.05 vs. ranitidine) # (p less than 0.05 vs. pantoprazole 20 mg) Note: pantoprazole 10 mg was superior (p less than 0.05) to ranitidine in Study 2, but not Study 1. Pantoprazole Pantoprazole Ranitidine 20 mg daily 40 mg daily 150 mg twice daily Study 1 n = 75 n = 74 n = 75 Month 1 91* 99* 68 Month 3 82* 93*# 54 Month 6 76* 90*# 44 Month 12 70* 86*# 35 Study 2 n = 74 n = 88 n = 84 Month 1 89* 92*# 62 Month 3 78* 91*# 47 Month 6 72* 88*# 39 Month 12 72* 83* 37 Pantoprazole 40 mg was superior to ranitidine in reducing the number of daytime and nighttime heartburn episodes from the first through the twelfth month of treatment. Pantoprazole 20 mg, administered once daily, was also effective in reducing episodes of daytime and nighttime heartburn in one trial, as presented in Table 11. Table 11: Number of Episodes of Heartburn (mean ± SD) * (p less than 0.001 vs. ranitidine, combined data from the two US studies) Pantoprazole Ranitidine 40 mg daily 150 mg twice daily Month 1 Daytime 5.1 ± 1.6* 18.3 ± 1.6 Nighttime 3.9 ± 1.1* 11.9 ± 1.1 Month 12 Daytime 2.9 ± 1.5* 17.5 ± 1.5 Nighttime 2.5 ± 1.2* 13.8 ± 1.3 14.3 Pathological Hypersecretory Conditions Including Zollinger-Ellison Syndrome In a multicenter, open-label trial of 35 patients with pathological hypersecretory conditions, such as Zollinger-Ellison Syndrome, with or without multiple endocrine neoplasia-type I, pantoprazole successfully controlled gastric acid secretion. Doses ranging from 80 mg daily to 240 mg daily maintained gastric acid output below 10 mEq/h in patients without prior acid-reducing surgery and below 5 mEq/h in patients with prior acid-reducing surgery. Doses were initially titrated to the individual patient needs, and adjusted in some patients based on the clinical response with time [see Dosage and Administration (2)] . Pantoprazole was well tolerated at these dose levels for prolonged periods (greater than 2 years in some patients).
Clinical Studies Table
+ (p less than 0.001) pantoprazole versus placebo * (p less than 0.05) versus 10 mg or 20 mg pantoprazole # (p less than 0.05) versus 10 mg pantoprazole | ||||
–––––––––––––––PANTOPRAZOLE––––––––––––––– | Placebo | |||
Week | 10 mg daily (n = 153) | 20 mg daily (n = 158) | 40 mg daily (n = 162) | (n = 68) |
4 | 45.6%+ | 58.4%+# | 75.0%+* | 14.3% |
8 | 66.0%+ | 83.5%+# | 92.6%+* | 39.7% |
Geriatric Use
8.5 Geriatric Use In short-term US clinical trials, EE healing rates in the 107 elderly patients (greater than or equal to 65 years old) treated with pantoprazole were similar to those found in patients under the age of 65. The incidence rates of adverse reactions and laboratory abnormalities in patients aged 65 years and older were similar to those associated with patients younger than 65 years of age.
Labor And Delivery
8.2 Lactation Risk Summary Pantoprazole has been detected in breast milk of a nursing mother after a single 40 mg oral dose of pantoprazole. There were no effects on the breastfed infant (see Data) . There are no data on pantoprazole effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for pantoprazole and any potential adverse effects on the breastfed child from pantoprazole or from the underlying maternal condition. Data The breast milk of a 42-year-old woman receiving 40 mg of oral pantoprazole, at 10 months postpartum, was studied for 24 hours, to demonstrate low levels of pantoprazole present in the breast milk. Pantoprazole was detectable in milk only 2 and 4 hours after the dose with milk levels of approximately 36 mcg/L and 24 mcg/L, respectively. A milk-to-plasma ratio of 0.022 was observed at 2 hours after drug administration. Pantoprazole was not detectable (less than 10 mcg/L) in milk at 6, 8 and 24 hours after the dose. The relative dose to the infant was estimated to be 7.3 mcg of pantoprazole, which is equivalent to 0.14% of the weight-adjusted maternal dose. No adverse events in the infant were reported by the mother.
Pediatric Use
8.4 Pediatric Use The safety and effectiveness of pantoprazole for short-term treatment (up to eight weeks) of EE associated with GERD have been established in pediatric patients 1 year through 16 years of age. Effectiveness for EE has not been demonstrated in patients less than 1 year of age. In addition, for patients less than 5 years of age, there is no appropriate dosage strength in an age-appropriate formulation available. Therefore, pantoprazole is indicated for the short-term treatment of EE associated with GERD for patients 5 years and older. The safety and effectiveness of pantoprazole for pediatric uses other than EE have not been established. 1 year through 16 years of age Use of pantoprazole in pediatric patients 1 year through 16 years of age for short-term treatment (up to eight weeks) of EE associated with GERD is supported by: a) extrapolation of results from adequate and well-controlled studies that supported the approval of pantoprazole for treatment of EE associated with GERD in adults, and b) safety, effectiveness, and pharmacokinetic studies performed in pediatric patients [see Clinical Studies ( 14.1 ), Clinical Pharmacology ( 12.3 )] . Safety of pantoprazole in the treatment of EE associated with GERD in pediatric patients 1 through 16 years of age was evaluated in three multicenter, randomized, double-blind, parallel-treatment studies, involving 249 pediatric patients, including 8 with EE (4 patients ages 1 year to 5 years and 4 patients 5 years to 11 years). The children ages 1 year to 5 years with endoscopically diagnosed EE (defined as an endoscopic Hetzel-Dent score greater than or equal to 2) were treated once daily for 8 weeks with one of two dose levels of pantoprazole (approximating 0.6 mg/kg or 1.2 mg/kg). All 4 of these patients with EE were healed (Hetzel-Dent score of 0 or 1) at 8 weeks. Because EE is uncommon in the pediatric population, predominantly pediatric patients with endoscopically-proven or symptomatic GERD were also included in these studies. Patients were treated with a range of doses of pantoprazole once daily for 8 weeks. For safety findings see Adverse Reactions ( 6.1 ) . Because these pediatric trials had no placebo, active comparator, or evidence of a dose response, the trials were inconclusive regarding the clinical benefit of pantoprazole for symptomatic GERD in the pediatric population. The effectiveness of pantoprazole for treating symptomatic GERD in pediatric patients has not been established. Although the data from the clinical trials support use of pantoprazole for the short-term treatment of EE associated with GERD in pediatric patients 1 year through 5 years, there is no commercially available dosage formulation appropriate for patients less than 5 years of age [see Dosage and Administration ( 2 )] . In a population pharmacokinetic analysis, clearance values in the children 1 year to 5 years old with endoscopically proven GERD had a median value of 2.4 L/h. Following a 1.2 mg/kg equivalent dose (15 mg for less than or equal to 12.5 kg and 20 mg for greater than 12.5 to less than 25 kg), the plasma concentrations of pantoprazole were highly variable and the median time to peak plasma concentration was 3 hours to 6 hours. The estimated AUC for patients 1 year to 5 years old was 37% higher than for adults receiving a single 40 mg tablet, with a geometric mean AUC value of 6.8 mcg•hr/mL. Neonates to less than one year of age Pantoprazole was not found to be effective in a multicenter, randomized, double-blind, placebo-controlled, treatment-withdrawal study of 129 pediatric patients 1 through 11 months of age. Patients were enrolled if they had symptomatic GERD based on medical history and had not responded to non-pharmacologic interventions for GERD for two weeks. Patients received pantoprazole daily for four weeks in an open-label phase, then patients were randomized in equal proportion to receive pantoprazole treatment or placebo for the subsequent four weeks in a double-blind manner. Efficacy was assessed by observing the time from randomization to study discontinuation due to symptom worsening during the four-week treatment-withdrawal phase. There was no statistically significant difference between pantoprazole and placebo in the rate of discontinuation. In this trial, the adverse reactions that were reported more commonly (difference of greater than or equal to 4%) in the treated population compared to the placebo population were elevated CK, otitis media, rhinitis, and laryngitis. In a population pharmacokinetic analysis, the systemic exposure was higher in patients less than 1 year of age with GERD compared to adults who received a single 40 mg dose (geometric mean AUC was 103% higher in preterm infants and neonates receiving single dose of 2.5 mg of pantoprazole, and 23% higher in infants 1 through 11 months of age receiving a single dose of approximately 1.2 mg/kg). In these patients, the apparent clearance (CL/F) increased with age (median clearance: 0.6 L/hr, range: 0.03 L/hr to 3.2 L/hr). These doses resulted in pharmacodynamic effects on gastric but not esophageal pH. Following once daily dosing of 2.5 mg of pantoprazole in preterm infants and neonates, there was an increase in the mean gastric pH (from 4.3 at baseline to 5.2 at steady-state) and in the mean % time that gastric pH was greater than 4 (from 60% at baseline to 80% at steady-state). Following once daily dosing of approximately 1.2 mg/kg of pantoprazole in infants 1 through 11 months of age, there was an increase in the mean gastric pH (from 3.1 at baseline to 4.2 at steady-state) and in the mean % time that gastric pH was greater than 4 (from 32% at baseline to 60% at steady-state). However, no significant changes were observed in mean intraesophageal pH or % time that esophageal pH was less than 4 in either age group. Because pantoprazole was not shown to be effective in the randomized, placebo-controlled study in this age group, the use of pantoprazole for treatment of symptomatic GERD in infants less than 1 year of age is not indicated. Animal Toxicity Data In a pre- and post-natal development study in rats, the pups were administered oral doses of pantoprazole at 5, 15, and 30 mg/kg/day (approximately 1, 2.3, and 3.2 times the exposure (AUC) in children aged 6 years to 11 years at a dose of 40 mg) on postnatal day (PND 4) through PND 21, in addition to lactational exposure through milk. On PND 21, decreased mean femur length and weight and changes in femur bone mass and geometry were observed in the offspring at 5 mg/kg/day (approximately equal exposures (AUC) in children aged 6 years to 11 years at the 40 mg dose) and higher doses. Changes in bone parameters were partially reversible following a recovery period. In neonatal/juvenile animals (rats and dogs) toxicities were similar to those observed in adult animals, including gastric alterations, decreases in red cell mass, increases in lipids, enzyme induction and hepatocellular hypertrophy. An increased incidence of eosinophilic chief cells in adult and neonatal/juvenile rats, and atrophy of chief cells in adult rats and in neonatal/juvenile dogs, was observed in the fundic mucosa of stomachs in repeated-dose studies. Full to partial recovery of these effects were noted in animals of both age groups following a recovery period.
Pregnancy
8.1 Pregnancy Risk Summary Available data from published observational studies did not demonstrate an association of major malformations or other adverse pregnancy outcomes with pantoprazole. In animal reproduction studies, no evidence of adverse development outcomes was observed with pantoprazole. Reproduction studies have been performed in rats at oral doses up to 450 mg/kg/day (about 88 times the recommended human dose) and rabbits at oral doses up to 40 mg/kg/day (about 16 times the recommended human dose) with administration of pantoprazole during organogenesis in pregnant animals and have revealed no evidence of harm to the fetus due to pantoprazole in this study (see Data) . A pre-and postnatal development toxicity study in rats with additional endpoints to evaluate the effect on bone development was performed with pantoprazole sodium. Oral pantoprazole doses of 5, 15, and 30 mg/kg/day (approximately 1, 3, and 6 times the human dose of 40 mg/day) were administered to pregnant females from gestation day (GD) 6 through lactation day (LD) 21. Changes in bone morphology were observed in pups exposed to pantoprazole in utero and through milk during the period of lactation as well as by oral dosing from postnatal day (PND) 4 through PND 21 [see Use in Specific Populations ( 8.4 )] . There were no drug- related findings in maternal animals. Advise pregnant women of the potential risk of fetal harm. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in the clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. Data Human Data Available data from published observational studies failed to demonstrate an association of adverse pregnancy-related outcomes and pantoprazole use. Methodological limitations of these observational studies cannot definitely establish or exclude any drug-associated risk during pregnancy. In a prospective study by the European Network of Teratology Information Services, outcomes from a group of 53 pregnant women administered median daily doses of 40 mg pantoprazole were compared to a control group of 868 pregnant women who did not take any proton pump inhibitors (PPIs). There was no difference in the rate of major malformations between women exposed to PPIs and the control group, corresponding to a Relative Risk (RR)=0.55, [95% Confidence Interval (CI) 0.08-3.95]. In a population-based retrospective cohort study covering all live births in Denmark from 1996 to 2008, there was no significant increase in major birth defects during analysis of first trimester exposure to pantoprazole in 549 live births. A meta-analysis that compared 1,530 pregnant women exposed to PPIs in at least the first trimester with 133,410 unexposed pregnant women showed no significant increases in risk for congenital malformations or spontaneous abortion with exposure to PPIs (for major malformations OR=1.12 ([95% CI 0.86-1.45] and for spontaneous abortions OR=1.29 [95% CI 0.84-1.97]). Animal Data Reproduction studies have been performed in rats at oral pantoprazole doses up to 450 mg/kg/day (about 88 times the recommended human dose based on body surface area) and in rabbits at oral doses up to 40 mg/kg/day (about 16 times the recommended human dose based on body surface area) with administration of pantoprazole sodium during organogenesis in pregnant animals. The studies have revealed no evidence of impaired fertility or harm to the fetus due to pantoprazole. A pre- and postnatal development toxicity study in rats with additional endpoints to evaluate the effect on bone development was performed with pantoprazole sodium. Oral pantoprazole doses of 5, 15, and 30 mg/kg/day (approximately 1, 3, and 6 times the human dose of 40 mg/day on a body surface area basis) were administered to pregnant females from gestation day (GD) 6 through lactation day (LD) 21. On postnatal day (PND 4) through PND 21, the pups were administered oral doses at 5, 15, and 30 mg/kg/day (approximately 1, 2.3, and 3.2 times the exposure (AUC) in humans at a dose of 40 mg). There were no drug-related findings in maternal animals. During the preweaning dosing phase (PND 4 to 21) of the pups, there were increased mortality and/or moribundity and decreased body weight and body weight gain at 5 mg/kg/day (approximately equal exposures (AUC) in humans receiving the 40 mg dose) and higher doses. On PND 21, decreased mean femur length and weight and changes in femur bone mass and geometry were observed in the offspring at 5 mg/kg/day (approximately equal exposures (AUC) in humans at the 40 mg dose) and higher doses. The femur findings included lower total area, bone mineral content and density, periosteal and endosteal circumference, and cross-sectional moment of inertia. There were no microscopic changes in the distal femur, proximal tibia, or stifle joints. Changes in bone parameters were partially reversible following a recovery period, with findings on PND 70 limited to lower femur metaphysis cortical/subcortical bone mineral density in female pups at 5 mg/kg/day (approximately equal exposures (AUC) in humans at the 40 mg dose) and higher doses.
Use In Specific Populations
8 USE IN SPECIFIC POPULATIONS Pregnancy : Based on animal data, may cause fetal harm. ( 8.1 ) 8.1 Pregnancy Risk Summary Available data from published observational studies did not demonstrate an association of major malformations or other adverse pregnancy outcomes with pantoprazole. In animal reproduction studies, no evidence of adverse development outcomes was observed with pantoprazole. Reproduction studies have been performed in rats at oral doses up to 450 mg/kg/day (about 88 times the recommended human dose) and rabbits at oral doses up to 40 mg/kg/day (about 16 times the recommended human dose) with administration of pantoprazole during organogenesis in pregnant animals and have revealed no evidence of harm to the fetus due to pantoprazole in this study (see Data) . A pre-and postnatal development toxicity study in rats with additional endpoints to evaluate the effect on bone development was performed with pantoprazole sodium. Oral pantoprazole doses of 5, 15, and 30 mg/kg/day (approximately 1, 3, and 6 times the human dose of 40 mg/day) were administered to pregnant females from gestation day (GD) 6 through lactation day (LD) 21. Changes in bone morphology were observed in pups exposed to pantoprazole in utero and through milk during the period of lactation as well as by oral dosing from postnatal day (PND) 4 through PND 21 [see Use in Specific Populations ( 8.4 )] . There were no drug- related findings in maternal animals. Advise pregnant women of the potential risk of fetal harm. The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in the clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. Data Human Data Available data from published observational studies failed to demonstrate an association of adverse pregnancy-related outcomes and pantoprazole use. Methodological limitations of these observational studies cannot definitely establish or exclude any drug-associated risk during pregnancy. In a prospective study by the European Network of Teratology Information Services, outcomes from a group of 53 pregnant women administered median daily doses of 40 mg pantoprazole were compared to a control group of 868 pregnant women who did not take any proton pump inhibitors (PPIs). There was no difference in the rate of major malformations between women exposed to PPIs and the control group, corresponding to a Relative Risk (RR)=0.55, [95% Confidence Interval (CI) 0.08-3.95]. In a population-based retrospective cohort study covering all live births in Denmark from 1996 to 2008, there was no significant increase in major birth defects during analysis of first trimester exposure to pantoprazole in 549 live births. A meta-analysis that compared 1,530 pregnant women exposed to PPIs in at least the first trimester with 133,410 unexposed pregnant women showed no significant increases in risk for congenital malformations or spontaneous abortion with exposure to PPIs (for major malformations OR=1.12 ([95% CI 0.86-1.45] and for spontaneous abortions OR=1.29 [95% CI 0.84-1.97]). Animal Data Reproduction studies have been performed in rats at oral pantoprazole doses up to 450 mg/kg/day (about 88 times the recommended human dose based on body surface area) and in rabbits at oral doses up to 40 mg/kg/day (about 16 times the recommended human dose based on body surface area) with administration of pantoprazole sodium during organogenesis in pregnant animals. The studies have revealed no evidence of impaired fertility or harm to the fetus due to pantoprazole. A pre- and postnatal development toxicity study in rats with additional endpoints to evaluate the effect on bone development was performed with pantoprazole sodium. Oral pantoprazole doses of 5, 15, and 30 mg/kg/day (approximately 1, 3, and 6 times the human dose of 40 mg/day on a body surface area basis) were administered to pregnant females from gestation day (GD) 6 through lactation day (LD) 21. On postnatal day (PND 4) through PND 21, the pups were administered oral doses at 5, 15, and 30 mg/kg/day (approximately 1, 2.3, and 3.2 times the exposure (AUC) in humans at a dose of 40 mg). There were no drug-related findings in maternal animals. During the preweaning dosing phase (PND 4 to 21) of the pups, there were increased mortality and/or moribundity and decreased body weight and body weight gain at 5 mg/kg/day (approximately equal exposures (AUC) in humans receiving the 40 mg dose) and higher doses. On PND 21, decreased mean femur length and weight and changes in femur bone mass and geometry were observed in the offspring at 5 mg/kg/day (approximately equal exposures (AUC) in humans at the 40 mg dose) and higher doses. The femur findings included lower total area, bone mineral content and density, periosteal and endosteal circumference, and cross-sectional moment of inertia. There were no microscopic changes in the distal femur, proximal tibia, or stifle joints. Changes in bone parameters were partially reversible following a recovery period, with findings on PND 70 limited to lower femur metaphysis cortical/subcortical bone mineral density in female pups at 5 mg/kg/day (approximately equal exposures (AUC) in humans at the 40 mg dose) and higher doses. 8.2 Lactation Risk Summary Pantoprazole has been detected in breast milk of a nursing mother after a single 40 mg oral dose of pantoprazole. There were no effects on the breastfed infant (see Data) . There are no data on pantoprazole effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for pantoprazole and any potential adverse effects on the breastfed child from pantoprazole or from the underlying maternal condition. Data The breast milk of a 42-year-old woman receiving 40 mg of oral pantoprazole, at 10 months postpartum, was studied for 24 hours, to demonstrate low levels of pantoprazole present in the breast milk. Pantoprazole was detectable in milk only 2 and 4 hours after the dose with milk levels of approximately 36 mcg/L and 24 mcg/L, respectively. A milk-to-plasma ratio of 0.022 was observed at 2 hours after drug administration. Pantoprazole was not detectable (less than 10 mcg/L) in milk at 6, 8 and 24 hours after the dose. The relative dose to the infant was estimated to be 7.3 mcg of pantoprazole, which is equivalent to 0.14% of the weight-adjusted maternal dose. No adverse events in the infant were reported by the mother. 8.4 Pediatric Use The safety and effectiveness of pantoprazole for short-term treatment (up to eight weeks) of EE associated with GERD have been established in pediatric patients 1 year through 16 years of age. Effectiveness for EE has not been demonstrated in patients less than 1 year of age. In addition, for patients less than 5 years of age, there is no appropriate dosage strength in an age-appropriate formulation available. Therefore, pantoprazole is indicated for the short-term treatment of EE associated with GERD for patients 5 years and older. The safety and effectiveness of pantoprazole for pediatric uses other than EE have not been established. 1 year through 16 years of age Use of pantoprazole in pediatric patients 1 year through 16 years of age for short-term treatment (up to eight weeks) of EE associated with GERD is supported by: a) extrapolation of results from adequate and well-controlled studies that supported the approval of pantoprazole for treatment of EE associated with GERD in adults, and b) safety, effectiveness, and pharmacokinetic studies performed in pediatric patients [see Clinical Studies ( 14.1 ), Clinical Pharmacology ( 12.3 )] . Safety of pantoprazole in the treatment of EE associated with GERD in pediatric patients 1 through 16 years of age was evaluated in three multicenter, randomized, double-blind, parallel-treatment studies, involving 249 pediatric patients, including 8 with EE (4 patients ages 1 year to 5 years and 4 patients 5 years to 11 years). The children ages 1 year to 5 years with endoscopically diagnosed EE (defined as an endoscopic Hetzel-Dent score greater than or equal to 2) were treated once daily for 8 weeks with one of two dose levels of pantoprazole (approximating 0.6 mg/kg or 1.2 mg/kg). All 4 of these patients with EE were healed (Hetzel-Dent score of 0 or 1) at 8 weeks. Because EE is uncommon in the pediatric population, predominantly pediatric patients with endoscopically-proven or symptomatic GERD were also included in these studies. Patients were treated with a range of doses of pantoprazole once daily for 8 weeks. For safety findings see Adverse Reactions ( 6.1 ) . Because these pediatric trials had no placebo, active comparator, or evidence of a dose response, the trials were inconclusive regarding the clinical benefit of pantoprazole for symptomatic GERD in the pediatric population. The effectiveness of pantoprazole for treating symptomatic GERD in pediatric patients has not been established. Although the data from the clinical trials support use of pantoprazole for the short-term treatment of EE associated with GERD in pediatric patients 1 year through 5 years, there is no commercially available dosage formulation appropriate for patients less than 5 years of age [see Dosage and Administration ( 2 )] . In a population pharmacokinetic analysis, clearance values in the children 1 year to 5 years old with endoscopically proven GERD had a median value of 2.4 L/h. Following a 1.2 mg/kg equivalent dose (15 mg for less than or equal to 12.5 kg and 20 mg for greater than 12.5 to less than 25 kg), the plasma concentrations of pantoprazole were highly variable and the median time to peak plasma concentration was 3 hours to 6 hours. The estimated AUC for patients 1 year to 5 years old was 37% higher than for adults receiving a single 40 mg tablet, with a geometric mean AUC value of 6.8 mcg•hr/mL. Neonates to less than one year of age Pantoprazole was not found to be effective in a multicenter, randomized, double-blind, placebo-controlled, treatment-withdrawal study of 129 pediatric patients 1 through 11 months of age. Patients were enrolled if they had symptomatic GERD based on medical history and had not responded to non-pharmacologic interventions for GERD for two weeks. Patients received pantoprazole daily for four weeks in an open-label phase, then patients were randomized in equal proportion to receive pantoprazole treatment or placebo for the subsequent four weeks in a double-blind manner. Efficacy was assessed by observing the time from randomization to study discontinuation due to symptom worsening during the four-week treatment-withdrawal phase. There was no statistically significant difference between pantoprazole and placebo in the rate of discontinuation. In this trial, the adverse reactions that were reported more commonly (difference of greater than or equal to 4%) in the treated population compared to the placebo population were elevated CK, otitis media, rhinitis, and laryngitis. In a population pharmacokinetic analysis, the systemic exposure was higher in patients less than 1 year of age with GERD compared to adults who received a single 40 mg dose (geometric mean AUC was 103% higher in preterm infants and neonates receiving single dose of 2.5 mg of pantoprazole, and 23% higher in infants 1 through 11 months of age receiving a single dose of approximately 1.2 mg/kg). In these patients, the apparent clearance (CL/F) increased with age (median clearance: 0.6 L/hr, range: 0.03 L/hr to 3.2 L/hr). These doses resulted in pharmacodynamic effects on gastric but not esophageal pH. Following once daily dosing of 2.5 mg of pantoprazole in preterm infants and neonates, there was an increase in the mean gastric pH (from 4.3 at baseline to 5.2 at steady-state) and in the mean % time that gastric pH was greater than 4 (from 60% at baseline to 80% at steady-state). Following once daily dosing of approximately 1.2 mg/kg of pantoprazole in infants 1 through 11 months of age, there was an increase in the mean gastric pH (from 3.1 at baseline to 4.2 at steady-state) and in the mean % time that gastric pH was greater than 4 (from 32% at baseline to 60% at steady-state). However, no significant changes were observed in mean intraesophageal pH or % time that esophageal pH was less than 4 in either age group. Because pantoprazole was not shown to be effective in the randomized, placebo-controlled study in this age group, the use of pantoprazole for treatment of symptomatic GERD in infants less than 1 year of age is not indicated. Animal Toxicity Data In a pre- and post-natal development study in rats, the pups were administered oral doses of pantoprazole at 5, 15, and 30 mg/kg/day (approximately 1, 2.3, and 3.2 times the exposure (AUC) in children aged 6 years to 11 years at a dose of 40 mg) on postnatal day (PND 4) through PND 21, in addition to lactational exposure through milk. On PND 21, decreased mean femur length and weight and changes in femur bone mass and geometry were observed in the offspring at 5 mg/kg/day (approximately equal exposures (AUC) in children aged 6 years to 11 years at the 40 mg dose) and higher doses. Changes in bone parameters were partially reversible following a recovery period. In neonatal/juvenile animals (rats and dogs) toxicities were similar to those observed in adult animals, including gastric alterations, decreases in red cell mass, increases in lipids, enzyme induction and hepatocellular hypertrophy. An increased incidence of eosinophilic chief cells in adult and neonatal/juvenile rats, and atrophy of chief cells in adult rats and in neonatal/juvenile dogs, was observed in the fundic mucosa of stomachs in repeated-dose studies. Full to partial recovery of these effects were noted in animals of both age groups following a recovery period. 8.5 Geriatric Use In short-term US clinical trials, EE healing rates in the 107 elderly patients (greater than or equal to 65 years old) treated with pantoprazole were similar to those found in patients under the age of 65. The incidence rates of adverse reactions and laboratory abnormalities in patients aged 65 years and older were similar to those associated with patients younger than 65 years of age.
How Supplied
16 HOW SUPPLIED/STORAGE AND HANDLING How Supplied Pantoprazole sodium for delayed-release oral suspension is supplied as yellow to brownish yellow color enteric coated granules containing 40 mg pantoprazole filled and sealed in a unit-dose packet and are available as follows: NDC 27241-256-38 unit-dose carton of 30 Storage Store pantoprazole sodium for delayed-release oral suspension at 20°C to 25°C (68°F to77°F); excursions permitted to 15°C to 30°C (59°F to 86°F). [see USP Controlled Room Temperature].
Learning Zones
The Learning Zones are an educational resource for healthcare professionals that provide medical information on the epidemiology, pathophysiology and burden of disease, as well as diagnostic techniques and treatment regimens.
Disclaimer
The drug Prescribing Information (PI), including indications, contra-indications, interactions, etc, has been developed using the U.S. Food & Drug Administration (FDA) as a source (www.fda.gov).
Medthority offers the whole library of PI documents from the FDA. Medthority will not be held liable for explicit or implicit errors, or missing data.
Drugs appearing in this section are approved by the FDA. For regions outside of the United States, this content is for informational purposes only and may not be aligned with local regulatory approvals or guidance.